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Abstract 

The fundamental requirement of truly autonomous mobile robots is navigation. Nav- 
igation is the science of determining one's position and orientation based on infor- 
mation provided by various sensors. Mobile robot navigation, especially autonomous 
vehicle navigation, is confronted with the problem of attempting to determine the 
structure of an a priori unknown environment, while at the same time using this in- 
formation for navigation purposes. This problem is referred to as concurrent mapping 
and localization (CML). This thesis addresses the question of how to improve CML 
performance through smarter sensing strategies affecting robot behavior. Planned 
perception is the process of adaptively determining the sensing strategy of the mo- 
bile robot. The goal of integrating planned perception within concurrent mapping 
and localization is to attempt to answer the question of how a mobile robot should 
behave so as to attempt to optimize CML performance. This thesis demonstrates in 
simulation how the CML framework could be improved with planned perception by 
motivating changes in robot pose and hence, sensing locale. 
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Chapter 1 

Introduction 

Navigation is the science of determining one's position and orientation based on infor- 

mation provided by various sensors. Mobile robot navigation, especially autonomous 

vehicle navigation, is confronted with the problem of attempting to determine the 

structure of an a priori unknown environment, while at the same time using this 

information for navigation purposes. Overcoming this problem is essential for true 

autonomy [13,26]. This problem is challenging because it must address two difficult 

issues simultaneously: navigation and mapping [2,7,27,46]. Concurrent Mapping 

and Localization (CML) is the process of simultaneously building a map of the en- 

vironment and using this map to obtain improved estimates of the location of the 

vehicle. 

The fundamental requirement of truly autonomous mobile robots is navigation [21]; 

precision underwater vehicle navigation remains the principle obstacle to improved 

mobile robot and autonomous underwater vehicle (AUV) control [52]. Concurrent 

mapping and localization is intended to enable a mobile robot faced with the tasks 

of mapping and navigating to address these issues concurrently and reliably. 

Autonomous vehicles must address the tasks associated with concurrent mapping 

and localization. This thesis addresses the question of how the incorporation of 

smarter sensing strategies will improve CML performance. Through the integration 

of planned perception with CML we will be motivated to change robot pose and 

hence, sensing locale.   Adaptive sensing through planned perception will maximize 
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robot pose certainty through the re-observation of features of importance. 

1.1    Navigation techniques used in CML 

The localization problem is the specific problem of determining the location of a 

robot relative to a map [50]. Accurate localization forms the basis for most control 

and navigation decisions; without this feedback, control performance is limited [53]. 

Thus, reliable localization is an essential component of any autonomous vehicle sys- 

tem^, 27,51]. CML approaches the navigation problem with three primary repre- 

sentations: beacon-based navigation, relative navigation (dead reckoning and inertial 

navigation systems), and map-based navigation. Relative navigation is subject to ex- 

ternal disturbances and uncorrectable drift allowing position errors to grow without 

bounds. However, bounded errors may be achieved through acoustic transponder re- 

sets. Regardless, CML has the potential to enable missions with bounded navigation 

errors without relying on a priori maps, acoustic beacons, or GPS resets [20,27]. 

1.1.1    Dead reckoning and inertial navigation systems 

Dead reckoning is the traditional and most common navigation technique. Estimates 

of vehicle position are obtained by integrating the vehicle velocity over time. Inertial 

navigation systems (INS) integrate the vehicle's acceleration twice to obtain new 

position estimates. Vehicle motion is sensed through gyroscopes and accelerometers. 

Starting with the most recent estimate of vehicle speed and direction, these integrated 

quantities are used to achieve updates of new position estimates. 

Although dead reckoning is a common navigation technique, it has certain draw- 

backs. Navigation is limited by inaccuracies resulting from integration errors and 

system biases. Also, inertial navigation systems are expensive and consume much 

power. Relying exclusively on dead reckoning results in position error that grows 

without bound over time. 
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1.1.2 Beacon-based navigation 

Beacons placed at known locations allow for vehicles to determine their position 

through triangulation [34]. The beacons emit pulses utilizing transducers or trans- 

ducer arrays. Position fixes of vehicle location may be obtained by detecting these 

outgoing pulses and triangulating position location based on range and/or bearing 

measurements given a priori knowledge of beacon locations. 

The satellite-based Global Positioning System (GPS) is the most prevalent beacon- 

based navigation system. This system, for many outdoor applications, provides a 

means for estimating position with a high accuracy. GPS signals are unable to be 

utilized indoors or underwater because of signal attenuation. Therefore, in the areas 

of indoor and underwater mobile robotics, GPS is not a reliable resource. Currently, 

two primary acoustic transponder systems are used in underwater navigation: long 

baseline (LBL) and ultra-short baseline (USBL) [34]. Both the USBL and LBL sys- 

tems rely on accurate beacon positioning in order to obtain vehicle position relative 

to the transponders or beacons as shown in Figurel-1. 

1.1.3 Map-based navigation 

For some missions, beacons may be unavailable or impractical. However, if an a priori 

map of the environment is available, it may be possible to navigate relative to terrain. 

Map-based navigation is performed by correlating sensor data with an a priori map to 

deduce accurate localization. One such system is used by the U.S. Navy Tomahawk 

Cruise Missile (BGM-109). The Tomahawk's system couples inertial guidance with a 

terrain contour matching (TERCOM) guidance system [39]. By comparing a stored 

map to actual terrain measurements, it is possible to estimate the missile's position. 

Unclassified, accurate, underwater maps are not often available. Even if a prior 

map exists, matching the sensed environment to that of the given prior map is a 

challenge. Map-based navigation has been applied by Carpenter and Medeiros [10]. 

They performed map-based navigation onboard an AUV with bathymetric data. 
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Figure 1-1: Basic LBL Description. The vehicle estimates its position by obtaining 
a "fix." A fix is obtained by triangulating range measurements received from each 
beacon. 

1.2    Mapping techniques used in CML 

Because a priori known maps of the environment are not always available, robots 

often must build such a map themselves. The task of building a map is estimating the 

locations of unknown objects in the environment [29]. Once a map of the environment 

is provided, accurate vehicle localization can be derived. Approaches to map creation 

can be categorized into three main areas: grid-based mapping, feature-based mapping, 

and topological mapping. 

1.2.1    Grid-based mapping 

Grid-based map representations, such as those implemented by Moravec [35] and 

Thrun et al. [48], represent the environment as an evenly-spaced grid. Individual 

cells that are certain to be occupied by a feature will be assigned a probability value 

of 1. Cells that are sure to be free of features are assigned probability values of 0. A 
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map of the environment is formed based on the assigned probabilities and is referred 

to as a certainty grid or occupancy grid. Mapping is performed by incorporating new 

measurements of the surrounding environment into the certainty grid. The probabil- 

ity values of the respective grid cells are adjusted according to the information and 

certainty of object locations obtained from the vehicle's measurements. The robot 

performs localization through map matching. Map matching is the process in which 

the robot creates a new local map and then compares this map to all previously 

constructed global maps. The best map match is found through the correlation of 

the local map with previous global maps. It is from this match that the new esti- 

mate of the robot's location is determined. Current state-of-the-art implementation 

of grid-based mapping has been performed by Thrun et al. [9]. 

The benefits of representing the environment using a grid-based map include sim- 

plicity of implementation and maintenance. However, this approach has a weak the- 

oretical foundation and some feature-specific information (such as type of feature) 

is lost when features are assigned as probabilities to grid cells [21,22,29]. Other 

drawbacks to grid-based approaches are high storage requirements for data, difficulty 

in differentiating similar environments, and a high computational cost of localiza- 

tion [49]. 

1.2.2    Feature-based mapping 

Rooted in the ideas of target tracking and surveillance [3], a geometric, feature- 

based representation of the map models the environment as a set of geometric primi- 

tives(such as points, lines, and planes) and builds a metrically accurate map to encode 

the landmark features [28,29]. With the introduction of Stochastic Mapping (SM), 

Smith, Self, and Cheeseman [46] paved the way for future work in the field of feature- 

based mapping. Stochastic mapping, presented in more detail in Chapter 2, provides 

the theoretical foundation for the implementation of feature-based CML. 



£0 INTRODUCTION 

1.2.3    Topological mapping 

Instead of representing the environment as a metrically accurate map, topological 

mapping generates graph-like descriptions of the environment. Kuipers and Byun [25] 

have used the topological approach by representing the environment as a graph of 

arcs and nodes [16]. Nodes and arcs represent different aspects of the environment 

map. Nodes represent easily distinguishable "significant places" in the environment. 

Arcs connect the nodes and represent the set of actions that connect the significant 

places. This topological model is behavior-based and utilizes reactive rules to move 

between the nodes, thus it is able to be used for route planning and obstacle avoidance. 

The drawbacks to using a topological approach to mapping are applications to larger 

environments and "significant place" recognition [25]. Because globally referenced, 

metrically accurate maps are a necessity for many operations, these drawbacks may 

pose a significant threat to achieving mission objectives [21]. 

1.3    Feature-based CML 

Motivated by the need for accurate, reliable navigation systems for AUVs, this study 

of mobile robots pertains to autonomous vehicles overcoming the problem of oper- 

ating in an unknown environment with imprecise navigation properties. The CML 

algorithm allows the vehicle, starting at an unknown location, to build a map of the 

previously unknown environment and then utilize that information to improve its 

own navigation estimate [44]. The research presented in this thesis concentrates on 

feature-based CML. 

This thesis focuses on the feature-based approach of Stochastic Mapping (SM). 

Stochastic mapping [45] provides the theoretical foundation for the implementation of 

feature-based CML. First introduced by Smith, Self, and Cheeseman [46], stochastic 

mapping uses the extended Kaiman filter (EKF) [4,43] for state estimation. This algo- 

rithm stores estimates of robot and environmental feature locations and orientations 

in a single state vector along with an associated error covariance matrix representing 

the correlations between all mapped entities [41]. Features may be added to and re- 
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moved from the state vector and covariance matrix as time progresses; as new features 

are observed, the state space is augmented. The stochastic mapping algorithm is used 

to build and update a feature-based map of the environment from observations (sensor 

measurements) and from a model of vehicle dynamics/kinematics. Simultaneously, 

like the EKF, SM performs localization by updating vehicle position. 

One challenge to stochastic mapping is data association. The data association 

problem consists of relating observations and measurements with the corresponding 

features [31,44]. Data association and obtaining a correct solution is crucial because 

a misassignment will cause the filter estimates to diverge [37]. Solutions to the data 

association problem must be addressed to employ a stochastic mapping approach to 

CML [20]. 

Stochastic mapping and extensions to stochastic mapping have proven to yield 

valid solutions to the concurrent mapping and localization problem. Some solutions 

have expanded SM and incorporate track initiation, track deletion, and data associa- 

tion [17-19,27,44,53]. Dissanayake [17] and Newman [38] provide an analysis of the 

performance of the stochastic mapping algorithm. These results show that a solution 

to the CML problem is possible; an autonomous vehicle located in an unknown po- 

sition in an unknown environment can build a map, using only observations relative 

to its position, and simultaneously compute a bounded estimate of vehicle location. 

The strengths and advantages of the feature-based approach of Stochastic Map- 

ping to the CML problem are: 

• Easily identifiable features in the environment are able to be extracted and 

mapped. 

• A recursive solution to the navigation problem is provided. 

• Consistent estimates for uncertainty in vehicle and feature locations are com- 

puted. 

• SM can provide robust globally referenced navigation information. 
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• The SM approach to CML has the potential to enable autonomous robots to 

operate with bounded navigation errors without relying on acoustic beacons, a 

priori maps, or GPS updates. 

1.4    Problem Statement 

Stochastic mapping is a viable solution to the problem of operating in an unknown 

location in an unknown environment. The feature-based approach of CML utilizing 

stochastic mapping requires a mobile robot to take observations of its environment. 

The robot then maps its surrounding features and uses this map to navigate. Planned 

perception involves the focusing of sensory efforts to selected areas of interest. Areas 

of interest are defined as those areas and features which will improve the current 

navigation estimates and/or those which may contain new, useful features. 

Planned perception is the process of adaptively determining the sensing strat- 

egy of the mobile robot. The goal of integrating planned perception with CML is to 

provide the mobile robot with a means to determine the optimal action given the cur- 

rent knowledge of robot pose (attitude and position), the environment, and sensors. 

Planned perception is a step in the direction of improving the overall CML frame- 

work. Strategic sensing will allow for a mobile robot to limit its area of sensing to 

those of interest or those that will provide a means of minimizing vehicle uncertainty. 

By integrating CML with planned perception through smarter sensing strategies 

we will attempt to answer the question of how a mobile vehicle should behave so as to 

attempt to maximize CML performance. CML performance could be defined as dis- 

covering areas of interest, maximizing pose certainty, and maximizing map (feature) 

certainty. 

This thesis will demonstrate in simulation how the CML framework could be 

improved through smarter sensing strategies and how a mobile vehicle should behave 

so as to attempt to optimize CML performance. The proposed approach will utilize 

a metric of feature quality and feature modality applied to robot sensing to motivate 

changes in robot behavior.  We intend to show that CML performance, augmented 
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with smarter sensing strategies, will exhibit improved performance by motivating 

changes in robot orientation and sensing strategies. 

1.5 Summary 

The chapter presented the concept of concurrent mapping and localization as well as 

the idea of integrating planned perception with CML. The basic description of the 

current techniques of autonomous underwater vehicle mapping and navigation were 

presented and reviewed. This thesis focuses on the problem of extending feature- 

based SM and concurrent mapping and localization through the application of smarter 

sensing strategies which will affect the mobile vehicle's behavior. 

1.6 Thesis contributions 

This thesis makes the following contributions: 

• A method for integrating planned perception within concurrent mapping and 

localization. 

• An analysis of planned perception performance in simulation. 

1.7 Thesis overview 

This thesis presents an algorithm demonstrating how the CML framework could be 

improved through smarter sensing strategies and how a mobile vehicle should behave 

so as to attempt to optimize CML performance. The structure of this thesis is as 

follows: 

Chapter 2 establishes the mathematical framework employed in the study of the 

concurrent mapping and localization problem. 

Chapter 3 presents the theoretical contribution of this thesis as it addresses the 

integration of planned perception within the stochastic mapping algorithm. 
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Chapter 4 applies the integration of planned perception and CML. The design 

and results of the simulation are presented. 

Chapter 5 summarizes the main contributions of this thesis and provides sugges- 

tions for future research. 



Chapter 2 

Stochastic Mapping 

This chapter is concerned with the mathematical framework employed in this study 

of Concurrent Mapping and Localization. This framework was first introduced in 

a seminal paper [46] by Smith, Self, and Cheeseman and is known as Stochastic 

Mapping. Stochastic Mapping (SM) is simply a way of implementing feature-based 

concurrent mapping and localization utilizing an extended Kaiman filter for state 

estimation [21]. 

This chapter reviews the stochastic mapping algorithm. It begins with a brief 

overview of the Kaiman filter. Section 2.2 defines the state vector and covariance 

matrix which are used to describe the system behavior. Section 2.3 presents the 

models employed to represent a mobile robot and its environment in order to solve 

the CML problem. A generalized framework for the SM estimation process is then 

presented in Section 2.4. The chapter concludes with an analysis of structure of 

the CML problem and the convergence properties of the map and its steady-state 

behavior. 

2.1    The Kaiman Filter 

In this section we will outline the Kaiman filter and the extended Kaiman filter. For 

a full derivation and a more detailed discussion refer to [4,8,23,33,43]. The Kaiman 

filter is introduced because it serves as the premise for the extended Kaiman filter 
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(EKF). The EKF is the observer [5] used in the stochastic mapping approach to CML. 

2.1.1 The Kaiman filter 

The Kaiman filter is a recursive least squares estimator. It is the optimal estimator 

if the dynamic model is linear and the noise processes are Gaussian. If the noise 

processes are non-Gaussian but the system is linear, the Kaiman filter is the best 

linear estimator [4]. Without the loss of generality, in this discussion of the Kaiman 

filter, a linear dynamic system and Gaussian noise processes are assumed. 

The Kaiman filter is a way of determining minimum mean-square error (MMSE) 

estimates using state-space methods. It is a procedure that uses the results of the 

previous time step to aid in obtaining the estimate at the current step of the process [8, 

43]. The outline of the Kaiman filter is seen in Figure 2-1. 

At time step k the Kaiman filter produces an MMSE estimate x(k\k) of the state 

vector x(/c). This estimate summarizes the information up to time step k- 1. Refine- 

ment of our estimate is obtained by fusing a prediction of the state estimate k(k\k-1) 

with an observation z(fc) of the state vector x(fc). The recursion is completed when 

the estimated state x(k\k) is predicted through a system model to produce a new 

estimate x(k + l\k). 

The Kaiman filter is a recursive solution of the linear filtering problem. Despite 

the Kaiman filter's efficiency, real navigation problems almost always involves a non- 

linear dynamic system. The extended Kaiman filter is used in situations involving 

non-linear vehicle motion and measurement relationships. 

2.1.2 The Extended Kaiman filter 

In any real navigation problem vehicle motion and the observation of features are 

almost always a non-linear processes. To compensate for the non-linearity of the 

dynamic system, two basic ways of linearizing the non-linearities are the linearized 

Kaiman filter and the extended Kaiman filter [8]. The linearized Kaiman filter re- 

quires linearizing about some nominal trajectory in state space that does not depend 
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Figure 2-1: The Kaiman Filter. From Bar-Shalom and Li [4] 



28 STOCHASTIC MAPPING 

on measurement data. The extended Kaiman filter (EKF) linearizes about a trajec- 

tory that is updated continually with the state estimates resulting from observations. 

The EKF is the core method used in stochastic mapping. It is the technique of 

linearizing a non-linear dynamic system for use in a Kaiman filter. 

In order to circumvent the problem of operating with non-linearities, the non- 

linear models are approximated through a Taylor series expansion. The first order 

version of this expansion allows for the filter to be derived in the same manner as 

for the linear Kaiman filter with the exception that the non-linear vehicle model and 

observation model are linearized [4]. 

This linearization is performed using Jacobians. The Jacobian of a function is a 

matrix of partial derivatives with respect to a vector. The Jacobian of a function f 

with vector x is defined as 

f* = Vf = 
<9x„ 

8fi 
9xi 

9f2 
9xi 

9xi 

9fi 
9x2 

df2 
9x2 

9fm 

9x2 

8fi 
9x„ 

9f2 
9x„ 

dfrn 
9x„ 

(2.1) 

Assuming that the approximation error of linearizing the non-linearities is small, 

the EKF can then be derived in the same manner as the linear case. The outline of 

the extended Kaiman filter is seen in Figure 2-2. 

It is the extended Kaiman filter that forms the basis for the stochastic mapping 

algorithm. Smith, Self, and Cheeseman state that the reasons for using EKF are 

because of its simplicity in implementation, its similarity to the optimal linear filter 

(linear Kaiman filter), and its ability to provide accurate estimates [46]. The EKF 

provides a means for which a mobile robot can perform relative measurements to fea- 

tures and obtain a bounded estimate of vehicle and landmark locations in a recursive 

fashion. 
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Figure 2-2: The Extended Kaiman Filter. From Bar-Shalom and Li [4] 
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2.2    State vector and covariance matrix 

Stochastic mapping represents the environmental map as a system state vector and an 

associated estimate error covariance. The state vector, x, is defined as a combination 

of the vehicle states, x„, and feature states, xf. It stores the estimated state of the 

environment (feature locations) and the state of the vehicle (robot pose). The state 

of the system at time k can be represented by the augmented state vector, x(fc). 

Where Nf describes the number of observed features at time k, x/.(fc) = [xf. yf]
T, 

i = 1,..., Nf, the system state vector is defined 

x(*) = 
x„(fc) 

xv(k) 

xfl{k) 

xfN/(
k)_ 

(2-2) 

The SM algorithm is a recursive estimation process that produces a MMSE es- 

timate x(k + l\k) of the state x given a sequence of observations up to time k+ I, 
z = W1). • • •. z(^)}- The filter fuses a prior estimate k(k\k - 1) with an observa- 

tion z(fc) of state x(fc) at time k to produce an updated estimate k(k\k). The state 

estimate is defined 

x(A; + l|Ar)   =   E[x(fc + l)|Zfc] 

x„(A;+l|fc) 

xyi(A: + l|fc) 

■kfNf(k + l\k) 

(2.3) 

(2.4) 

Throughout this thesis, the vehicle's state estimate will be defined by 
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Figure 2-3: Definitions of the vehicle states used in the model 

X-y 

Xy 

Vv 

e 

(2.5) 

to represent the vehicle's east position, north position, and heading as shown in 

Figure 2-3. 

The estimated error covariance associated with the state vector is given by 

T\r?k] 
P{k\k) = E[(x(fc) - x(fc|fc))(x(fc) - x(fc|fc)r lz (2.6) 

This matrix defines the mean squared error and error correlations in each of the state 

estimates. The covariance matrix may also be written as 

k\k 

* vv       *-vl 

Plu        Pll 

PNJV     PjV/1 

P^TV; 

Piw, 

...  p N/Nj 

(2.7) 

J k\k 

The sub-matrices, P„„, Pu, and Pvi are the vehicle-to-vehicle, feature-to-feature, and 
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vehicle-to-feature (»variances respectively. The vehicle (P„U(Ä;)) and feature (Pü(k)) 

covariances are located on the main diagonal. They describe the uncertainty in the 

estimate of each state. The off-diagonals contain the vehicle-to-feature, (P„i(Jfc)), and 

feature-to-feature, (Py(/c)), cross correlations. The off-diagonal terms describe the 

correlation between the uncertainties. 

It is essential to maintain the cross correlations for two reasons. First, the infor- 

mation gained about one state can be used to improve the estimate of other correlated 

states. Second, maintaining cross correlation terms prevent the SM algorithm from 

becoming "overconfident." Being overconfident leads to incorrectly assuming features 

are independent when in fact, they are correlated [11]. 

Thus, the vehicle and map are represented by a single state vector x with estimate 

x and an associated estimate error covariance P. Given the definitions above, an EKF 

is employed to estimate the state and covariance given the measurements z. 

2.3    System models 

The stochastic mapping algorithm depends on three key models: the vehicle model, 

the feature model, and the observation model. This section presents the general form 

of these models employed by this thesis. The vehicle model describes the kinematics 

and dynamics of the mobile robot. The feature model describes feature physics and 

relation to the environment. The observation model relates the observations to the 

state vector. 

2.3.1    Vehicle model 

The general form of a vehicle model (or process model) can be written as 

x„(fc + 1) = f„[x„(fc), uv{k + 1), (k + 1)] + vv{k + 1). (2.8) 

This model attempts to capture the relationship between the vehicle's past state, 

x„(/c), and its current state, xv(k + 1), given a control input, uv(k + 1). 
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The vector x„(fc) is the vehicle state vector. It describes the state of the vehicle 

at time k. The vehicle state vector may contain any number of vehicle parameters. 

However, for the purpose of this thesis, the state vector is limited to defining the 

position and orientation of the vehicle in two dimensions. 

The function f„ is the state transition matrix. It mathematically represents the 

mobile robot's dynamics, mobility, and kinematics. The discrete time vehicle model 

describes the transition of the vehicle state vector x„ from time k to time k+1. 

The vector uv(k + 1) is the control input at time k+1. The control inputs in this 

thesis are vehicle speed and heading or steer angle, defining u=[v 9]T. 

The random vector v„ is the vehicle model process noise. It represents all of the 

noise and unmodelled aspects of vehicle behavior. This vehicle model process noise is 

assumed to be a stationary, temporally uncorrelated zero mean Gaussian white noise 

process. Because of this assumption, and the defined expectation in Equation 2.9, it 

can be shown that [8,43] 

E[v„] = 0,Vfc (2.9) 

E[v« • vvj } = < 
Q„(/c)   iii = j = k 

0 otherwise 
(2.10) 

where Qv(k) is the covariance of v„ at time k such that 

vv 0 
Qv = Q = 

0 4>v 
(2.11) 

and vv and <j)v are the variances in error associated with velocity and heading, respec- 

tively. Q is the uncertainty in the process noise modelled with known variances. 

The vehicle model used in this thesis is given by Equation 2.12 

xv{k + 1) = f„x„(fc) + u„(fc + 1) + v„(fc + 1). (2.12) 

The dynamic model f„ is the defined as the state transition matrix for the vehicle 
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model. The vehicle model used in this thesis can be expanded and written as 

x + vATcos{6) 

x„(A: + l)=    y + vATsm(6)    , (2.13) 

9 + tp 

where AT is the change in time. This particular vehicle model is non-linear. The 

model will be linearized using its Jacobian evaluated at the vehicle state at time k 

such that 

Vf„(A;) = 

1   0   -u(fc)ATsinp(fc) 

0   1    v{k) AT cos (p(k) 

0   0 1 

(2.14) 

2.3.2    Feature model 

A feature is a discrete, fixed, and identifiable landmark of the environment that can 

be consistently and reliably observed by the vehicle's sensors. Features can have many 

physical forms and can be both active features (artificial acoustic beacons) or passive 

features (points, planes, corners, poles). 

Features are represented mathematically as a vector of parameters defining the 

landmark's properties. This thesis focuses on the simplest of all feature models, the 

stationary point landmark. The point feature is static and may be defined by two 

parameters specifying its position with respect to a global, 2-Dimensional coordinate 

frame. This type of feature is observable from any angle at any distance. 

The f point feature in the environment is represented by the state estimate 

parameters defined as 

H (2.15) 

Since features are assumed to be stationary, there is no additive uncertainty term 

due to movement in the feature model.  Thus, a trivial relationship exists between 
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the point feature state at time k+1 and h Therefore, the point feature model can 

be represented by 

xfi{k+l) = Xft(k) = xIt. (2.16) 

2.3.3    Observation model 

The general form for the observation model for the ih feature is given by 

Zi(k) = hl[xv{k),Xf(k),k] + wi{k). (2.17) 

The vector Zj(fc) is the observation vector at time k. In this thesis, the observation 

vector consists of range and bearing measurements taken at time k. The range zn(k) 

and bearing zVi{k) measurements are of the th feature, with state x/.(fc) relative to 

the robot's location x„(A;). The measurement vector is given by 

Zi(k) = (2.18) Zri(fc) 

zVl{k)_ 

The function h, is the observation model. The observation model relates the 

output of the sensor zt to the state vector x when observing the fh landmark. 

The random vector Wj is the observation noise. All unmodelled sensor character- 

istics and noise corruption are represented in Wj(fc). This observation error vector is 

again assumed to be a stationary, temporally uncorrelated zero mean random process. 

Because of this assumption and the defined expectation of Equation 2.19,   [8,43] 

E[Wi] = 0,Vfc (2.19) 

_       .   Rj(fc)   if i = j = k . . 
E[wu ■ w,J] = {      A } (2.20) 

0 otherwise 

where Rj(/c) is the observation error covariance matrix of w; at time k such that 
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R   = 
-Vtu 

(2.21) 

and zrw and zv>w are the variances associated with the noise in range and bearing, 

respectively. 

The observation model used in this thesis is given by Equation 2.22 

Zi(k + 1)   =   hi[x(A;)] + w<(fc) 

=   hiM^^Wl + w^), 

where the defined observation matrix can be written and expanded as 

(2.22) 

(2.23) 

hi[x.v(k),xfi(k)] = 
y/{xfl(k) - xv(k))* + (yft(k) - yv{k)Y 

ärct£tn — f~T\ 7TT ™ u,, xfi(k)-xv(k)        Vv 

(2.24) 

2.4    Stochastic mapping estimation process 

Stochastic mapping (SM) is an EKF approach to the CML problem. This approach 

provides a recursive method for a mobile robot to yield bounded estimates of vehicle 

and landmark locations based on the information it obtained about the environ- 

ment [29]. 

The CML problem addresses the idea of a vehicle operating in an unknown envi- 

ronment starting at an unknown location. The number of states needed to estimate 

the map cannot be fixed at the start of the mission because the number of features 

in the environment will not be previously known. Hence, the size of the state vector 

can not be pre-determined and must be changed during the estimation process. 

Stochastic mapping considers CML as a variable-dimension state estimation prob- 

lem. A single state vector is used to represent the map; the state vector contains 

estimates of vehicle location and environmental features. The state size increases or 
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Figure 2-4: The role of the EKF in stochastic mapping. 

decreases as features are added or removed from the map. An associated covariance 

matrix contains the uncertainties of the estimates and the correlations between the 

vehicle and feature estimates. 

Stochastic mapping builds and updates a feature map of the environment from 

sensor measurements. Localization is performed simultaneously by updating the ve- 

hicle's position through an EKF. The approach is described in Figure 2-4. 

Section 2.2 defined the state vector and associated covariance matrix used in rep- 

resenting the map in the SM approach to CML. The system models employed by SM 

were defined in Section 2.3. Sections 2.4.1 and 2.4.3 present the estimation process 

of SM. The data association problem is reviewed in Section 2.4.4 and Section 2.4.5 

addresses how the representation of the map is augmented with the addition of new 

features. 

2.4.1    Prediction 

The prediction stage of the stochastic mapping algorithm uses the vehicle model 

described in Equation 2.12 and feature model described in Equation 2.16 to generate 
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a prediction of the state vector. This prediction is given according to 

x(Jfc + l|fc)   = iv(k)x(k\k) + uv(k) 

xv(k + l\k) 

xf(k+l\k) 

fv(k)x(k) + uv(k) 

xf(k) 
(2.25) 

The state prediction Equation 2.26 is for a linear system, specifically a linear 

vehicle model. Our thesis utilizes a non-linear model as described in Section 2.3.1. 

Thus, using the linearized vehicle model, Vf„, in Equation 2.14, the state prediction 

is calculated 

x(A;+l|fc) (2.26) 
Vf„(A0x(fc) + u„(fc) 

xf(k) 

During the prediction stage, the feature state estimates remain unchanged because 

the features are assumed to be stationary. 

Although features are assumed to be stationary, the vehicle is in motion and has 

an associated noise vector v„. This process noise is assumed to be uncorrelated and 

zero mean and can therefore be represented, based on Equations 2.9 and 2.10, with 

covariance Q. 

The prediction stage of the filter must also propagate the covariance matrix 

through the vehicle model. Defining Vf„ as the Jacobian of f„ evaluated at the 

estimated vehicle state x„, the prediction of the covariance matrix is described by 

P(fc + l\k) = Vfv(k)P(k\k)Vfv
T(k) + Vfu(k)u(k)Vfu

T(k) + Q(k), (2.27) 

where Vf„ is the Jacobian of f„ evaluated at the estimated vehicle state xv defined 

in Equation 2.14, and Vfu is the Jacobian of f„ evaluated with respect to the control 

input u. The Jacobian Vfu can be written and expanded as 
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AT cos 9 0 

Vfu=        AT sin 9 0 , (2.28) 

ATta,rnp/L   ATv sec2 <p/L 

where L is the length of the vehicle. We will define the length of the vehicle to be 1 

meter. The prediction stage of stochastic mapping may also be written 

p«/     p.ff fe+i|fe 

Pvf Vfv(k)Pvv(k\k)Vfv
T(k) + Vfu(fc)u(fc)Vf/(fc) + Q(fc)   Vfv(k)Pvf(k\k) 

(Viv(k)Pvf(k\k))T Pff(k\k) 

(2.29) 

The prediction of the estimated state and associated covariance matrix is made 

at each time step regardless of whether sensor measurements are taken. In the ab- 

sence of a measurement, the prediction estimates the position of the mobile robot by 

propagating the state (essentially performing dead reckoning). 

2.4.2    Observation 

The fusion of measurements into state estimates begins by calculating a predicted 

observation at time k, termed Zj(/c). Applying the observation model Equation 2.22, 

a predicted measurement is calculated by 

z(fc + l|fc) = h[x„(A; + l|fc),*Xfc + l|fc)]> (2.30) 

where h[x„(fc + l\k), xf(k + l\k)] is defined by Equation 2.24. 

Observations are received from sensors. These observation measurements must be 

associated with particular features in the environment. An association between the 

actual measurements with the predicted measurements is generated. The innovation, 

v, is defined as the difference between the actual observations, z, received from the 

systems sensors, and the predicted observations, z: 

i/(fc) = z(fc)-z(fc + l|fc). (2.31) 
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The innovation covariance, S(fc) can then be calculated at time k. It is computed 

from the current estimate of the covariance matrix P(A; + l\k), the covariance of 

observation noise R{k), and the Jacobian of the observation model h evaluated with 

respect to the estimated state vector, Vhx. The innovation covariance is then 

S(fc + 1) = Vhx{k)P{k + l|fc)Vh/(fc) + R(fc + 1). (2.32) 

The full measurement Jacobian Vhx is a combination the Jacobians of the obser- 

vation model evaluated with respect to the vehicle and feature states. This is noted 

because each observation is only a function of the feature being observed. Therefore, 

defining Vh„ and Vhy; as the Jacobians of the observation model with respect to 

vehicle state and feature state i, respectively, the overall observation Jacobian can be 

shown in the form 

Vhx{k) = [Vhv(k)    0    ...    0    Vhfi{k)    0    ...    Oj. 

For the purposes of this thesis, the Jacobian Vh„ is 

Vh„ = 
x"-x/,     y--y/j       Q 

r T 

—75 r2 1 

and the Jacobian Vh/? is 

Vhfi = 
x/,~x"     y/j-vv 

yfj-Vu X/j-Xy 

where r is the range defined, r = ^(xfi{k) - xv{k)f + (y/.(fc) - yv{k)f. 

(2.33) 

(2.34) 

(2.35) 

2.4.3    Update 

The observation z{{k + 1) is used to update the state and covariance predictions 

yielding new estimates at time k+1. The new state update x(Jfc + l|fc + 1) and 

updated state covariance P(fc + l\k + 1) are 
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x(fc + l|Jfe+l)   =   x(fc + l|fc) + W(fc + l)i/(A; + l) (2.36) 

P(fc + l|fc + l)   =   P(k + l\k)-W(k + l)S(k + l)WT(k + l),       (2.37) 

where the gain matrix is given by 

W(fc + 1) = P(fc + l|A)Vh/(fc + ys-^k + 1). (2.38) 

The pose estimate and associated errors are updated via the weighting factor 

of the gain matrix. The weighting factor is proportional to P(fc + l\k) and inversely 

proportional to the innovation covariance S(k+1). Thus, if the innovation covariance 

is large compared to the state covariance, the weighting factor approaches zero and 

the measurement has little affect on updating the state estimate. Conversely, if the 

prior state covariance is large compared to the innovation covariance, the weighting 

factor approaches identity and the state is updated taking into account nearly all of 

the difference between the measurement and expected value [43,46]. 

2.4.4    Data association 

The data association problem consists of relating observations and measurements to 

corresponding features included in the map. Data association algorithms are moti- 

vated by the desire to assign measurements to the features from which they originate. 

The most common method for performing data association are nearest neighbor tech- 

niques [21,27,30, 38]. This thesis applies the nearest neighbor gating data association 

algorithm. 

This section describes the technique which allows an observation, z, to be associ- 

ated with a landmark, x/.. It relies on the innovation, u, and innovation covariance, 

S. Given an observation z(fc), according to Equations 2.31 and 2.32, the Mahalanobis 

distance is defined as 7 where 
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T^/OS-^X/c) (2.39) 

and is tested 

7 < Igate- (2.40) 

The quantity 7 has a x2 probability distribution and can be used to accept or 

reject a particular association given a confidence level, or "validation gate," ygate. 

For a system with 2 degrees of freedom, a value of 9.0 yields the region of minimum 

volume that contains the observation with a probability of 98.9% [3]. It is this ygate 

that the Mahalanobis distance is gated against 

Igate     =     9.0 (2.41) 

7   <   9.0 (2.42) 

The test is performed for all known features, i=l...Nf, (all landmarks previously 

mapped). For all measurements z that can be potentially associated with feature 

i, 7z is calculated and tested according to Equation 2.40. The validation of this 

equation defines where a measurement is expected to be found. If some y{ < -ygate, 

the observation is used to update the state estimates. However, if an observation does 

not gate with any existing feature, it can be used to initialize a new feature into the 

map. The next section describes how a feature is initialized and augmented into the 

SM state space representation. 

2.4.5    Feature initialization 

The stochastic mapping algorithm allows for features to be added to and removed 

from the state vector and covariance matrix as time progresses. When a new feature 

is observed by measurement z, it must be initialized and added to the map; as new 

features are observed the state space is augmented. The initial estimate of the new 
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feature state is 

X/NrflW = g[x„(fc),z(fc)], JNj+ 
(2.43) 

where Nf represents the number of known features up to the current time step. The 

feature initialization model g maps the current vehicle estimate and observation to a 

new feature estimate. These new state estimates are appended to the estimated state 

vector as a new feature estimate consistent with the feature model, Equation 2.16. 

The estimated state vector is augmented to become 

x(fc + l|fc + l) = 
x(fc + l|fc) 

x/i Nf+l 

(2.44) 

The uncertainty of the new feature estimates must also be initialized in the covari- 

ance matrix based on the new observation. This observation was taken relative to the 

robot. Clearly, the uncertainty in the new feature's estimated location is correlated 

with the uncertainty in the robots's position. This uncertainty is therefore not only 

correlated with the vehicle, but also correlated with the other map state estimates 

(features). 

In order to account for the correlation of the estimated new feature and the pre- 

viously mapped state estimates, the covariance matrix must be augmented. The 

augmented covariance matrix is 

P(fc + l|fc + l) = 

P(fc + l|fc) B1 

(2.45) 

where P(k+l\k) is the estimate in the covariance matrix obtained from the prediction 

and B and A are defined as 
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B VgJP^ + llfc), 

A   =   VgJP(fc + l|fc)Vg/ + Vg2RVg T 
z    ) 

(2.46) 

(2.47) 

and R is the covariance error in observations defined in Equation 2.20. The symbols 

Vga and Vg2 are the Jacobians of the feature initialization model g with respect to 

the state and observation, respectively. The feature initialization model g can be 

written as 

Jnev 

J Jncv 

xv + zTcos(9 + ztp) 

yv + zrsin(# + zv) 
(2.48) 

Thus Vgx and Vg2 can be computed as 

Vgx   = 

Vg2   = 

1   0   -zrsin(<9 + zv) 

0   1    zrcos(ö + zV3) 

cos(ö + zv3)   -zrs'm(8 + z^) 

sin^ + z^,)    zTcos(9 + zv) 

(2.49) 

(2.50) 

This framework allows for a variable-dimension state representation of the vehicle 

and environment while still providing a recursive solution to the navigation problem. 

2.5    Structure of the CML problem 

This section discusses conclusions of work performed by Newman [38] and presented in 

Dissanayake et al. [17] that describe the convergence properties of the environmental 

map and its steady state behavior. These results provide crucial insight into the CML 

problem. The three convergence theorems are: 

First Convergence Theorem: The determinant of any sub-matrix of the map 

covariance matrix decreases monotonically as successive observations are made. 
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Figure 2-5: The Stochastic Mapping Algorithm 

Second Convergence Theorem: In the limit the landmark estimates become 

fully correlated. 

Third Convergence Theorem: In the limit, the lower bound on the covariance 

matrix associated with any single landmark estimate is determined only by the initial 

covariance in the vehicle estimate P0v at the time of the first sighting of the first 

landmark. 

The first theorem provides the following information. The uncertainty of a state 

estimate can be measured quantitatively by taking the determinant of a state covari- 

ance sub-matrix. The determinant of any sub-matrix of the map is a measure of the 

volume of uncertainty associated with the respective state estimate. This theorem 

states that the total uncertainty of the state estimate does not increase during the 

update step of the stochastic mapping algorithm; error is added during the predic- 

tion step and subtracted during the update step (refer to Sections 2.4.1 and 2.4.3). 

Thus, the error estimates of absolute location of features diminishes as successive 

measurements are made. 

The second theorem proves that error estimates for the vehicle and feature states 
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decrease as more and more observations are made. As the number of observations 

approaches infinity, features become more correlated. Thus, given the exact location 

of one landmark, the location of all other landmarks can be deduced with absolute 

certainty. Therefore, the map becomes fully correlated. 

The third theorem states that the absolute error for a single feature or vehicle 

can never be lower than the absolute vehicle error that was present at the time the 

feature was first initialized into the map. This proves that the error for a feature not 

be less than the error of the vehicle that was present at the time when the feature 

was first observed. 

2.6    Summary 

This chapter presented the stochastic mapping algorithm which is described in Fig- 

ure 2-5. This algorithm serves as the mathematical framework for this feature-based 

approach to CML. It is the estimation algorithm that will be employed in this thesis. 

A brief overview of the work-horse of the SM algorithm, the EKF, was presented. 

The steps involved in SM were then presented as well as methods in which to account 

for data association and initializing features into the map representation. 



Chapter 3 

Planned Perception 

This chapter contains the theoretical contribution of this thesis. It presents a tech- 

nique for adaptive concurrent mapping and localization (CML) based on motivating 

changes in robot behavior in an attempt to improve CML performance. This tech- 

nique will be evaluated by integrating planned perception with CML. 

3.1    Introduction 

Described in Chapter 2, SM is a viable solution to the problem of operating in an 

unknown location in an unknown environment. CML requires a mobile robot to take 

observations of objects in its environment. It maps the surrounding features based 

on these measurements and then uses this map for navigation. 

Planned perception is the process of adaptively determining the sensing strategy 

of the mobile robot. The goal of integrating smarter sensing strategies within CML is 

to provide the mobile robot with a means to determine the optimal action given the 

current estimates of the vehicle and map. Planned perception involves the focusing 

of sensory efforts to selected areas of importance. Areas of importance are defined as 

those areas and features which will improve the current navigation estimates and/or 

those which may contain new, useful features. By integrating CML with planned 

perception we will attempt to answer the question of how a mobile robot should 

behave so as to attempt to maximize CML performance. 
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Accurate information regarding the pose of the vehicle is vital for mission success. 

This drives the basis for our implementation of adaptive CML; planned perception 

is formulated so as to maximize vehicle certainty. The SM algorithm provides an 

inherent coupling (through cross-correlations) of the estimated states and associated 

uncertainties. Maintain of these cross-correlations is important to the CML pro- 

cess [17,38] as seen by the theorems described in Section 2.5. 

The CML process is a map-building system. What is important in a map-building 

system is maintaining the consistency and integrity of the whole map and the estimate 

of the mobile robot's position within it [15]. 

Since we aim to minimize vehicle uncertainty, our proposed approach chooses a 

landmark, from the available set of features, whose re-observation will best improve 

the robot's estimated state. This choice is based on criteria that will be described in 

Section 3.4. 

Section 3.2 presents scenarios that demonstrate why planned perception in CML 

is of interest. Section 3.3 reviews previous research in the area of adaptive sensing 

strategies. The proposed algorithm for integrating planned perception and CML is 

presented in Section 3.4. A summary of the chapter is provided in Section 3.5. 

3.2    Motivation 

Why is it important to adaptively choose a sensing and motion strategy for a mobile 

vehicle? Motivation behind integrating planned perception and CML can be seen 

through the following examples. These examples give an insight into the possible 

applications and motivating scenarios behind planned perception. 

Efficiency 

Planned perception and adaptive sensing techniques can be used to limit sensing to 

selected regions of interest, benefitting navigation precision and dramatically reducing 

computational requirements [21]. Planned perception within the CML algorithm will 

benefit mobile robots because it will reduce location estimation errors and reduce the 
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time and energy required to achieve a desired location accuracy. Thus, we will be 

improving the efficiency of the CML process for mobile robots [20]. 

Echo-location 

The behavior of dolphins and bats show how adaptive sensing can be beneficial. These 

animals use sonar systems from which they can establish and maintain "contact" by 

receiving echoes from features within the environment [20]. Bats and dolphins are 

constantly adaptive their movements during their "flight paths." This allows them 

to get a better understanding of the environment by obtaining sonar responses from 

multiple vantage points [1]. 

This process is similar to the way a human perceives the world. One's eyes are 

constantly moving, constantly adjusting, and constantly focusing on different objects 

to obtain a "picture" of the world. Thus, observing the world through planned 

perception is inherent in both humans and bats and dolphins; humans use vision and 

dolphins and bats use sonar. 

Military applications 

There is great potential for military application of autonomous underwater vehicles 

(AUVs). Examples of importance to the military, especially the U. S. Navy, are 

those associated with specific aspects of Naval Doctrine: Command, Control, and 

Surveillance, Power Projection, Force Sustainment, and Battlespace Dominance [36]. 

Command, Control, and Surveillance is defined as the gathering, processing, and 

distribution of information that is vital to military operations. Power Projection is 

the ability to respond to any call-to-duty around the world and to take the fight to 

the enemy. Force Sustainment is defined as the capability to sustain our forces at 

home and abroad through effective operation and supply. Battlespace Dominance 

is maintaining superiority of the always shifting, fluid, zones of military areas of 

operation. AUVs can provide the Navy with a means of enhancing the above missions 

through their inherent stealth and by reducing the risk of losing human life. AUVs 

can help fulfill the needs of the Navy because by shaping the battlespace in areas 
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denied to traditional maritime forces. 

Unlike current manned platforms, AUVs possess the capabilities of providing au- 

tonomy and enhanced deployability while keeping men out of harm's way. These 

skills are desirable in any maritime operation. AUVs may be launched from multiple 

platforms such as shore facilities, ships, submarines, and aircrafts. Autonomy allows 

for independent operation away from manned forces. This, in turn, allows for manned 

platforms to perform more complex tasks while extending the "reach" of their forces. 

The ability of an AUV to perform planned perception would allow the vehicle to 

strengthen its ability to navigate reliably while accomplishing its mission. Planned 

perception allows for a vehicle to focus its sensory efforts, focusing on features of good 

quality, in order to maintain an accurate estimate of vehicle state. Thus, planned 

perception may enable a vehicle to better perform missions such as antisubmarine 

warfare (ASW), intelligence, surveillance, and reconnaissance (ISR), and undersea 

search and survey. 

ISR missions may be enhanced by planned perception aboard AUVs. Due to 

their smaller size, AUVs provide superior maneuverability and are able to operate in 

shallow waters while still providing the ability to avoid detection. Thus, AUVs may 

be used for shallow water reconnaissance. Planned perception integrated with CML 

would allow a vehicle to focus on features of good quality. This would be beneficial 

in MCM (mine counter measure) missions because it provides a means of clandestine 

detection and mapping of a mine field. 

The integration of CML with an adaptive sensing strategy would also enhance 

ASW missions. Planned perception would allow an AUV to focus its sensory efforts 

on a submarine while providing a means to determine how to maneuver to acquire the 

maximum information about this target. AUVs could also serve as an autonomous 

weapons platform. Smarter sensing strategies may enable the vehicle to focus on its 

target and increase the probability of achieving mission success. 

One of the greatest fears of any submariner is the fate suffered by those lost in 

submarines such as the USS Scorpion, the USS Thresher, and the Russian Submarine 

Kursk [12,40]. Currently, the ability to detect submarines on the ocean floor (a subset 
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of undersea search and survey) is provided through either manned vehicles or the use 

of side-scan sonar deployed on towed arrays or on remotely operated vehicles (ROVs). 

However, AUVs utilizing planned perception may provide a greater advantage to 

locating objects, such as submarines and shipwrecks, on the bottom of the ocean. 

Integrating planned perception with CML would enable AUVs to detect these features 

and classify them as features of importance. Therefore, in this theater of operation, 

an AUV would be able to maneuver itself through adaptive sensing strategies to 

maximize the information gained from the environment. 

Closing the loop 

A crucial measure of success is the frequency with which the vehicle recognizes its 

initial location after it closes the loop. Closing-the-loop defines the problem for CML 

as it is the most important measure of how well the vehicle understands the envi- 

ronment. It is defined as the ability to recognize that the vehicle is back in the 

same place and that it is re-observing a feature it has previously sensed and mapped. 

Planned perception would enable the vehicle to increase its chances of closing the loop 

by relying on its ability to maneuver through the area of operation using adaptive 

sensing. 

3.3    Previous Work 

Strategic sensing allows for a mobile robot to limit its area of sensing to those of inter- 

est. This section reviews work related to the focus of this thesis: the demonstration of 

how the CML framework could be improved through smarter sensing strategies and 

how a mobile vehicle should behave so as to attempt to optimize CML performance. 

Planned perception has become a popular research topic. The idea of planned 

perception has been investigated in the area of robotics. Research synonymous with 

planned perception include active perception [47], active vision [14,15], directed sens- 

ing [29], adaptive sensing [20,21], adaptive sampling [6], and sensor management [32]. 

A common theme among the various adaptive sensing strategies has been choosing 
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the action which maximizes the information gained by the robot after evaluating the 

different sensing actions the robot can perform. While implementing this concept it is 

imperative to develop a quantitative method of evaluating the various future sensing 

actions of the robot [21]. 

Bellingham and Willcox [6] and Singh [42] have applied the concept of strategic 

sensing to marine robotics. Singh formulated and implemented adaptive sensing on 

the Autonomous Benthic Explorer. Bellingham and Willcox investigated dynamic 

oceanographic phenomena for AUVs. Also, Manyika and Durrant-Whyte [32] de- 

veloped a method for implementing an information theoretic approach to planned 

perception. This method was applied to a mobile robot operating indoors, given an 

a priori map, and sensing using multiple scanning sonars. 

Our approach is motivated by Feder's work [21] and is closest to Davison's im- 

plementation of active vision [14,15]. Feder, Leonard, and Smith [20] introduced a 

metric for adaptive sensing defined in terms of Fisher information. The goal of this 

approach is to determine the action that maximizes the total knowledge about the 

system in the presence of uncertainties in navigation and observations. The next 

action of the robot is chosen to attempt to maximize the robot's information about 

its location and all the features' locations (the map) [20]. The action that maximizes 

the information is expressed as 

Ufc = argumax Ifc+i|fc+1 = argumin Pfe+i|fc+i (3.1) 

where u is the control input, I is the Fisher information, and P is the error covari- 

ance [21]. A cost function is defined as 

N     l  
C(P) = iry/detiPJ) + ir^2yfdet{Pff) (3.2) 

i=l 

The action to take is given by evaluating Equation 3.1 using the metric in Equa- 

tion 3.2 [21]. The approach was demonstrated via simulation, underwater sonar 

experiments, and in-air sonar experiments [20,21] 

Davison implemented active vision on a mobile robot [14,15]. His work provides a 
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way for a mobile robot, with active camera sensors, to track and fixate features over a 

wide field of view. Stationary point features are used to observe and obtain estimates 

of robot state utilizing a Kaiman filter approach [15]. Davison and Murray propose 

three questions, or issues, that need to be considered to maintain the map [14]: 

1. Which of the current set of known features should be tracked? 

2. Is it time to label any features as not useful and abandon them? 

3. Is it time to look for new features? 

The third question is addressed when less than two features are currently visible. 

Question 2 is answered based on a method that abandons features if more than half 

of at least 10 attempts to observe that feature fail when it should be visible. 

To answer the first question, Davison presents a way [14,15] to calculate the 

volume of error (termed Vs) in 3-Dimensional space, for each feature. The quantity 

Vs is based on a metric using eigenvalues and is evaluated for each feature currently 

visible. The error with the highest value is selected to be measured. The goal is 

to observe the feature with the greatest uncertainty in order to "squash" the total 

uncertainty [14]. 

3.4    Planned Perception 

This section reviews the concept of planned perception and derives a method for 

integrating planned perception and concurrent mapping and localization within the 

stochastic mapping algorithm. 

3.4.1    Concept 

SM provides a means to perform CML. The map's information, consisting of the robot 

and features, is maintained as described in Chapter 2. The estimated state vector, x, 

and associated covariance matrix, P, are defined 
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x{k + l\k) = 

x„(fc + l|A:) 

xn{k+l\k) 

xfNj(k+ l\k) 

(3.3) 

Pfc|fc = 

p P«l PvNj 

Pi« Pll      • Pl/V/ 

P/y PJV,I   • '     ~PNJN) 

(3.4) 

k\k 

The sub-matrix POT represents the uncertainty in the vehicle estimates. Our goal is 

to minimize vehicle uncertainty. The approach relies on the convergence properties 

of CML reviewed in Section 2.5 and proved in [17,38]. 

The determinant of the state covariance matrix, Equation 3.4, is a measure of 

the volume of the uncertainty ellipsoid associated with the state estimate [17]. Thus, 

the determinant of the sub-matrix Pm represents the uncertainty ellipsoid associated 

with the vehicle state estimate x„ . It is this determinant that we will attempt to 

minimize through adaptively determining the sensing strategy of the mobile robot. 

A mobile robot is given the task of performing a specified mission. Performing 

this mission is defined as exploration. Exploration is the process of attempting to 

perform the mission objective. Mission objectives vary from scenario to scenario but 

some examples are: navigating between waypoints [21], traversing the corridors of 

a building [15], and detecting objects on the seabed [27]. These are only a few 

examples of mobile robot mission objectives, the possible missions a robot may be 

asked to perform are innumerable. 

Despite the specific mission, one aspect of exploration is constant; the mobile robot 

must accurately navigate to accomplish the objective. Reliable navigation requires 

good estimates of the vehicle state. Our proposed approach to incorporating planned 

perception in the SM algorithm focuses on maximizing vehicle certainty, therefore 

benefitting navigation precision. 
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While a vehicle is "confident" in its estimates, the determinant of the sub-matrix 

Pvv is relatively small. Therefore, the mission can be carried out as planned. However, 

when the uncertainty in vehicle estimates grows, the determinant of P„„ also grows. 

Thus, the vehicle becomes less certain of its overall state. It is at this instant, when the 

determinant of Pvv exceeds some threshold, that our method of planned perception 

motivates changes in robot pose and hence, sensing locale. The method of switching 

operating mode from exploration to localization (planned perception) is a function of 

vehicle uncertainty and can be shown in Figure 3-1. 

As successive observations are made, landmark estimates become fully corre- 

lated [17]. This is the second convergence theorem proved by Newman in his the- 

sis [38]. This implies that features become progressively more correlated as successive 

observations are made. This theorem also implies that in the limit, the map be- 

comes fully correlated and given the exact location of any one landmark, the exact 

absolute location of the vehicle or any other feature is deduced [22]. Thus, as suc- 

cessive observations are made the error associated with vehicle estimates decrease 

monotonically [17]. These theorems motivate our approach. 

When the uncertainty of the vehicle estimates grows, re-observing a feature al- 

ready mapped will update and improve the state estimates. This is because the total 

uncertainty of the state estimate does not increase during an update [17]. The ques- 

tion then arises, which feature should the vehicle attempt to re-observe. Our method 

of determining the feature the vehicle heads toward is defined below. 

This is the goal of our algorithm; in order to minimize vehicle uncertainty, planned 

perception determines which feature the vehicle should steer toward. Re-observing 

features will diminish vehicle uncertainty. Once vehicle uncertainty decreases and the 

determinant of Pvv is again below a given threshold, the vehicle returns to exploration 

and carries out its mission. 

3.4.2    Criteria 

The proposed planned perception approach considers three questions: 
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Mission style 
(operation mode) 

Figure 3-1: The Overall Mission Control Loop 

1. For all mapped features i = 1,..., Nf, the re-observation of which feature i will 

best improve vehicle estimates? 

2. What is the cost of re-observing feature i ? 

3. What is the risk of re-observing feature i ? 

The first question relates to the estimate of the vehicle state and associated covari- 

ance matrix. The second question presents a means to account for the cost of moving 

toward feature i. Battery life and power are important to autonomous robots. There- 

fore, moving to a far away feature will require more energy to be spent. Feder states: 

the problem of associating measurements with features in cluttered environments re- 

mains a challenging and important problem for any estimation problem that faces 

data association ambiguities [21]. The third question address this problem of data 

association. 
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Question 1: For all mapped features i = l,...,Nf, the re-observation of 

which feature i will best improve vehicle estimates? 

The determinant of P„„ is the measure of the volume of uncertainty associated with 

the vehicle state estimate. The total uncertainty of the state estimate does not 

increase during an update. An observation Zj(fc + 1) is used to update the state and 

covariance predictions yielding new estimates at time k + 1. The new state update 

x(A; + l\k + 1) and updated state covariance P(k + l\k + l) are computed 

x(Jfc + l|A: + l)   =   x(fc + l|A;) + W(A: + lMfc + l), (3.5) 

P(fc + l|fc + l)   =   P(fc + l|fc)-W(A:4a)S(A; + l)WT(fc+l), (3.6) 

where W is the weighted filter gain and S is the innovation covariance as described 

in Section 2.4. Thus, the covariance matrix is updated based on the matrix 

W(fc + l)S(Jfe + l)WT(k + 1). The matrix WSWT can be represented as 

WSW2 

(WSWT)t 

(WSW% 

(WSWT)„; 

(WSWT)// 

(3.7) 

Since our approach focuses on minimizing vehicle uncertainty, we will concentrate 

on the sub-matrix (WSWT)OT which will be referred to as WSWj. The sub-matrix 

P„„ is updated by the sub-matrix WSWj through the calculation 

Pw(fc + l|fc + 1) = Pvv(k + l\k) - [W{k + l)S(fc + l)W(fc + l)1 (3.8) 

Thus, since we desire to maximize vehicle certainty, we want the maximum change 

WSWj can provide. Representing the update Equation 3.8 in terms of determinants 

pvv(k+i\k +1) i = i pvv{k + i|*o I -1 wsw7; |, (3.9) 
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it is clear that to minimize the updated covariance of the vehicle, we need to maximize 

I WSWjf |. 

While performing planned perception, the vehicle desires re-observe a known fea- 

ture. Thus, the vehicle simulates a measurement to every known feature i. The 

associated, simulated matrix (WiSiWf)* is calculated for each feature. Because 

I WSWj | needs to be maximized, the vehicle chooses to steer toward feature i 

based on the metric 

argi max\ (W^Wf)» I (3.10) 

The goal is to steer towards feature i that, if observed, would most reduce P„„. 

Question 2: What is the cost of re-observing feature i ? 

Energy efficiency is a motivator for choosing actions to be performed by autonomous 

robots. This question address the expense of driving the vehicle toward a relatively far 

landmark. The cost of determining to steer toward a distant feature is proportional 

to the distance between feature i and the robot's current position. In 2-Dimensional 

space, the distance (represented || • ||) between two points (p: and p2) is calculated 

llPi - P2II = 0(Pix) - (P2x))2 + ((piv) - (P2,))2 (3.11) 

where px = [pXx ply)T and p2 = [p2x P2y]T- 

The distance between the current estimated robot position and feature i, ||x/j-x„||, 

can be calculated according to Equation 3.11 

11*/; - x„|| = Y/(X/, - xv)2 + (y/. - yv)
2 (3.12) 

This distance ||x^ - x„|| serves as our second criteria to determining the feature 

the vehicle steers toward. 
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Question 3: What is the risk of re-observing feature i? 

This question is a one of data association. Cluttered environments pose a threat 

to correctly associating measurements with features. Our approach considers the 

consequences of data association errors present in cluttered environments. For each 

estimated feature i = 1,..., Nf, the mean number of features within a certain distance 

are calculated. This distance is a defined threshold (i.e. two meters) and is used to 

calculate the density of features in a certain area. If feature density is relatively large, 

a measurement may be associated with the wrong feature; this may cause divergence 

due to a data association error [21]. 

Thus, our third and final criteria for determining which feature the vehicle should 

steer toward is a function of the density of features surrounding feature i, termed 

densityfi. The mean number of features within a certain distance is calculated to 

serve as the density function. 

3.4.3    Algorithm 

As described in Section 3.4.2, there are three aspects which govern our planned percep- 

tion algorithm of choosing which feature to steer toward. The criteria are summarized 

• Which feature, when re-observed, will best reduce vehicle uncertainty? 

• What is the cost of driving toward a feature? 

• What is the risk of associating a measurement of that feature with the wrong 

feature? 

We want to develop a quantitative method for evaluating which feature the ve- 

hicle should head toward. Combining these three criteria into one equation involves 

| (WiSiWf)v |, ||% - x„||, and a function of the density of features surrounding 

feature i, f (density fi). The three criteria will be represented as a scalar number, V, 

calculated 

Ti = -a\ (WiSiWT)v | + ß\\xfi - x„|| + C • f (densityfi) (3.13) 
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where a, ß, and ( are weighted gains for the different criteria, a represents the gain 

for the information desired, ß represents the gain for the distance between the robot 

and feature i. (, is the gain for the measure of the density of landmarks around feature 

i Our goal is to minimize I\ in Equation 3.13. 

While the determinant of Pvv is below the given threshold, the vehicle performs 

according to its assigned mission; while POT is relatively small, explore. When the 

vehicle is no longer "confident" in its state estimate, the planned perception algorithm 

acts as the controller and determines which feature to steer toward. This can be seen 

in Figure 3-1. 

The localization mode, that of adaptively sensing the environment through planned 

perception, is based on Equation 3.13. This equation is computed for all mapped 

features by simulating a measurement to each feature. Each mapped feature, i = 

1,...,N/, has an associated Tj value. When all I\ are computed for one iteration of 

the filter, the vehicle's control inputs are changed to steer toward feature i* that is 

associated with the minimum value Ait defined 

Ai+ = argi min I\. (3.14) 

Thus, the vehicle chooses to steer toward the feature i* associated with A** in Equa- 

tion 3.14. 

Performing the above planned perception approach will cause the vehicle to pos- 

sibly desire to steer toward a different feature i* at each time step. This continuous 

changing of desired features may cause the vehicle to oscillate between control inputs. 

To compensate for this oscillation, we add in some hysterisis. 

Hysterisis is a retardation of the effect of an action. Adding some hysterisis into 

our decision process accounts for the possibility that our algorithm may determine 

the vehicle should head toward a different feature i* at each iteration. Therefore, to 

ensure that our vehicle is steering toward the feature which bests suits our criteria 

for the entire time it is in localization mode, we store the value A,* at each time step. 

This provides us with A*(A;). 
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Figure 3-2: The integration of Planned Perception in Stochastic Mapping 

At each time step k during the localization mode of mission, an associated Aj*(fc) 

value is stored. This value is compared to Aj*(fc — 1). If 

A*(fc)< A*(fc-1) (3.15) 

the new feature i* (k) associated with A»(A;) is the fe'ature the vehicle determines to 

steer toward. However, if A* (A;) > Ai*(fc - 1), the vehicle continues to steer toward 

the feature associated with A,* (A; — 1). 

The action of the robot is given by evaluating Equation 3.14 using the metric 

Equation 3.15. The vehicle steers towards the feature which satisfies the above crite- 

ria. 

3.4.4    Planned perception summary 

Planned perception is integrated into stochastic mapping as shown in Figure 3-2 where 

the planned perception step is derived from Figure 3-1. The algorithm for performing 

planned perception is summarized below. 
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1. while det(Pw) < det(P mthreshold) do —•> explore 
2. control steer toward current waypoint 

3. if distance to current waypoint is < 3 m, control steer toward next waypoint 
4. end while 

5. while det(P„„) > det(Pvvthreshoid) do —► planned perception 
6. V features i — 1,..., Nj, simulate measurement 

7. for each feature^ and simulated measurement, calculate 
8. Innovation Covariance S 
9. Filter Gain W 

10. WtS*Wf 

11. det(WiSiWf) 
12. Hxyi-xJ 
13. mean number of features around featuret i—> densityji 

14. Tt = -a det(WiSiWf) + ß\\xfi - xv\\ + ((densityfi) 
15. Ai*(/c) = argi min Ti(k) 

16. if Ai*(fc) < Ai*(fc - 1) i—> store Aj*(fc), otherwise A,*(fc - 1) = Ait(k) 

17. Vehicle heads toward feature i* —> control steer to feature i* 
18. end while 

3.5    Summary 

This chapter presented the theory and algorithm of our approach to performing 

planned perception. The idea is based on analyzing the uncertainty in vehicle esti- 

mates. Planned perception determines what feature the vehicle should head toward. 

The presented strategy of performing adaptive sensing can easily be incorporated into 

the stochastic mapping algorithm. 



Chapter 4 

Simulation Design and Results 

This chapter is concerned with the simulation design and results. A description of 

the simulator is presented in Section 4.1. This chapter also presents the results from 

the simulations of the integrated planned perception and concurrent mapping and 

localization (CML) algorithm described in Chapter 2 and Chapter 3. 

4.1    Simulation design 

This section describes the simulation designed to implement the incorporation of 

planned perception within CML. The simulation is coded in © MATLAB and is 

described in Figure 4-1. Each step of the simulation is presented below. This presen- 

tation is a general overview of the simulation based on the algorithm and procedures 

set forth in Chapter 2 and Chapter 3. For a more in depth discussion on each process 

in Figure 4-1, refer to these Chapters. 

4.1.1    Setup and initialization 

This step of the simulation process is performed as the first step of the simulation. 

It defines and initializes all variables that will be used throughout the estimation 

process. During the setup, all matrices, vectors, and variables are defined and the 

specific size of each matrix is set.   The estimated state vector, x, is initialized to 
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zero with an initial uncertainty. Vehicle uncertainty is initialized with a standard 

deviation of 0.1 m in both the x and y direction, and a heading standard deviation 

of 0.1 degree. 

The setup process also defines the parameters of the system. The parameters are 

defined in Table 4.1. 

Table 4.1: System parameters 
sampling period, AT, Is 
vehicle cruise speed, v .75 m/s 
max. steer angle of vehicle 22.5° 
speed process noise std. dev. 0.25 m/s 
heading process noise std. dev. 1.0° 
range of sensor 25 m 
sensor field of view ±90° 
probability of measurement return 90% 
sensor range noise std. dev. 0.1 m/s 
sensor bearing noise std. dev. 1° 

The noise inherent in the process and observation models are also defined. The 

noise covariances, Q and R, are associated with the vehicle and observation models, 

respectively. The covariances are discussed in Section 2.3.1 and Section 2.3.3 and are 

defined 

Q = 

R   = 

0.52 0 

0 l2 

0.12 0 

0 l2 

(4.1) 

(4.2) 

The parameter and noise values are not chosen arbitrarily. They are chosen to 

reflect actual values apparent in systems. The sensor is modelled after the SICK laser 

scanner used in the Marine Robotics Laboratory at the Massachusetts Institute of 

Technology. The vehicle is modelled to have two scanners to provide range and bearing 

measurements. The range, field of view, and probability to return a measurement are 

described in Table 4.1. 
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Figure 4-1: The Simulation Design. 
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The parameters and defined matrices are passed to the filter. 

4.1.2    Estimation process 

This section describes the estimation process of the simulation. The estimation pro- 

cess consists of the prediction, data association, update, and feature initialization 

steps of the simulation. 

Prediction 

The prediction step of stochastic mapping described in Section 2.4.1. It consists of 

predicting the true vehicle states, the estimated vehicle states, and the covariance 

matrix. 

The true and estimated vehicle states are predicted by propagating the previous 

states through the vehicle model. The states of the vehicle are predicted by 

xv xv + vATcos(9) 

yv   U+i =    yv + vATsm(9)    \k, (4.3) 

9 6 + <p 

where v and ip are speed and heading control inputs with the process noise given in 

Table 4.1. The control inputs are given from the control input step of the simulation. 

This process will be described in Section 4.1.4. 

The covariance matrix P is also estimated during the prediction step. To esti- 

mate P, the Jacobians Vf„ and Vfu are calculated according to Equation 2.14 and 

Equation 2.28, respectively. The prediction of the covariance matrix is 

P(fc + l|fc) = Vf„(fc)P(fc|A;)Vf/(A:) + Vfu(fc)u(fc)Vfu
T(A;) + Q(jfc). (4.4) 

The prediction process is described as 
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1. do —> prediction 
2. x(fe + l|jfe = f»[x„(fc), u„(fc + 1)] «*• (truth projection) 
3. x„(fc + 1) = f„[x„(fc), u„(fc + 1)] <£> (estimate projection) 

4. Q <— u(/c) <£> (process noise covariance) 

5. Vf„ <=>■ (Jacobian of w.r.t. vehicle state) 
6. Vfu •»■ (Jacobian of w.r.t. control input) 

7. P(fe + l|fc) = Vf„(A;)P(A:|Ä)Vf/(fc) + Vf0(fe)u(fc)Vf„r(fc) + Q(fe) «■ (projection) 

8. end prediction 

The predicted estimated state vector and covariance matrix are used to attempt 

to assign features to measurements received from the sensors in the data association 

step of the simulation. 

Data association 

Data association is relating observations and measurements to their corresponding 

features. Data association algorithms strive to properly assign measurements to the 

features from which they originate.  Nearest neighbor gating, the process described 

in Section 2.4.4, is the data association method simulated. 

Nearest neighbor gating is simulated as 

1. do —> data association 
2. for V features, i=l...Nf, calculate 

3. vi = Zj — Zj <=>■ (innovation) 
4. Vhx ■&■ (Jacobian of h w.r.t. state estimate) 
5. Si(k + 1) = Vhx(k)P(k + l\k)Vhx

T(/c) + R(fc + 1) O (innovation covariance) 

6. 7J = vfS^Ui < 9 ■&■ (association test) 

7. if 7i < 9 —> update 
8. end for 
9. if no feature gates, —> do —> feature initialization 

10. end data association 

The gating is performed where 9 is chosen as the gating parameter based on a x2 

distribution as defined in Equation 2.40. Also, based on the estimated state vector 
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and observation model described in Section 2.3.3, the Jacobian Vhx is calculated 

according to Equation 2.33. 

Update 

The update step of simulation is straightforward; this step updates the estimates of 

the state vector and covariance matrix based on the observation z. The estimates are 

updated, as described in Section 2.4.3, according to 

1. do —> update 
2. W(fc + 1) = P(fc + l|fc)Vh/(/c + l)S-1(A: + l) «. (weighted gain / Kaiman gain) 
3. x(fc + l|fc + 1) = x(& + l|fc) + W(A: + l)i/(fc + 1) ^ (state update) 
4. P(fc + l|fc+l)=P(fc + l|fc)-W(fc + l)S(fc+l)WT(A;+l)^ (covariance update) 
5. end update 

The updated estimates are passed to the control input step to determine how the 

vehicle should act. The choice of control input is described in Section 4.1.4. 

Feature initialization 

This step of the simulation is called when no previously mapped feature is associated 

with a measurement. Feature initialization augments the estimated state vector and 

covariance to incorporate the new feature's location and uncertainty. The augmenta- 

tion is simulated as 
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1. do —> feature initialization 

x(fc + l|fc) 
2. x(fc + l|fc + l) 

X/Ny+1 

<=>■ (augmented state estimate) 

3. B = VgxP(k + l\k) 

4. A = VgJP(fc + l|fc)VgxT + VgaRVg/ 

P(fc + l|fe + l) = 
P(fc + l|fc) BT" 

B A 
•^(augmented covariance matrix) 

6. increase number of features 

7. end feature initialization 

This step of the simulation calculates the appropriate Jacobians to initialize the fea- 

ture as described in Section 2.4.5. 

4.1.3    Measurements 

Measurements are simulated as ranges and bearings to features. Ranges and bearings 

are simulated as 

1. do —> measurement 
2. for V features, i=l ...Nf 

if feature i is in sensor's field of view, add feature position to temporary set 
from this set, randomly choose 1 featured (feature observing) 

generate random number between 0 and 1 
if random number > 0.9-» Z = [ ] <^>(false return) 

else, Z 
'y/(xfi(k)-xv(k))* + (yfi(k) - yv(k)¥ 

arCtan 4(k)-xv(k) ~ °v 

8. if no feature is in the sensor's field of view, Z = [ ] <=>(no return) 

9. end for 
10. end measurement 

The measurement process described above is simulated for every time step. 
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4.1.4    Control input 

This step of the simulation determines the control input to the vehicle. The control 

input is a function of the uncertainty in the vehicle, defined Puv. While the uncertainty 

is less than the threshold, P vvthreshoid, the vehicle moves from waypoint to waypoint. 

When the vehicle is within 3 meters of the current waypoint, the control heading 

is changed to steer the vehicle to the next waypoint. While the uncertainty of the 

vehicle is greater than the given threshold, the vehicle performs planned perception. 

The planned perception algorithm is described in Chapter 3. 

The process of switching between mission styles, exploration and planned percep- 

tion, is simulated 

1. while det(POT) < det(Pvvthreshold) do —-> explore 
2. control steer toward current waypoint 

3. if distance to current waypoint is < 3 m, control steer toward next waypoint 
4. end while 
5. while det(P„„) > det(PvvthTesllold) do —> planned perception 
6. V features i = 1,..., Nf, simulate measurement 
7. for each featurei and simulated measurement, calculate 
8. Innovation Covariance S 
9. Filter Gain W 

10. WiSiWj 

11. det(WiSiWf) 
12. \\xji - x„|| 

13. mean number of features around featurei '—* densityji 

14. Ti = -a det(WiSiWf) + ß\\itfi - x„|| + ((densityfi) 
15. Aj*(fc) = argi min Ti(k) 

16. if Ai„(/c) < Ai*{k - 1) H—► store Ait(k), otherwise Ait(k - 1) = Aj*(fc) 
17. Vehicle heads toward feature i* —> control steer to feature i* 
18. end while 
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4.2    Simulation Results 

In this Simulation, the vehicle is to survey an area steering toward waypoints. The 

vehicle starts at position (0,0). The waypoints are defined to provide a "lawnmower" 

pattern, survey of the environment. The locations of the features and waypoints are 

defined during the setup process of the simulation in Figure 4-1. The features are 

2-Dimensional point features and are chosen from the set where x and y are random, 

independent variables which are uniformly distributed over the area [x:0—>120] and 

[y:-20—>135]. The features, and waypoints define the environment and are shown in 

the top of Figure 4-2. The desired path of the vehicle is shown in the bottom of 

Figure 4-2. 
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Figure 4-2: Top: The simulation environment. The red circles are the feature loca- 
tions. The black squares are the waypoints. Bottom: The desired path of the vehicle 
navigating between waypoints is shown by the thick red line. The black arrows de- 
pict the direction the vehicle takes going from (0,0) to the waypoint (105,120). The 
vehicle then back-tracks performing the lawnmower survey. 
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In the first simulation, the vehicle moves between the waypoints navigating only 

by dead reckoning. In the second simulation, the vehicle performs CML as it navi- 

gates according to the stochastic mapping algorithm defined in Chapter 2. The third 

simulation integrates planned perception and CML. This simulation is performed 

constraining the overall volume of vehicle uncertainty (the determinant of Pvv). Fi- 

nally, the fourth simulation performs planned perception constraining the vehicle 

uncertainty in the x and y directions. This simulation constrains a subset of the 

determinant POT; it constrains the determinant of Pxy which is the area of vehicle 

uncertainty associated with the x and y positions estimates. The simulations inte- 

grating planned perception and CML are broken into scenarios representing different 

strategies for planned perception navigation. 

The global parameters for each simulation are defined in Table 4.1 and Table 4.2. 

Table 4.2: Simulation parameters 
sampling period, AT, 1 s 
duration of simulation 2000 s 
number of waypoints 12 
number of features 30 
initial vehicle x position uncertainty std. dev 0.1 m 
initial vehicle y position uncertainty std. dev 0.1 m 
initial vehicle heading uncertainty std. dev 0.1 deg 

4.2.1    Dead reckoning 

Navigating by dead reckoning means that the estimation is calculated only by the 

vehicle model. There is no observation of features. In terms of the Kaiman filter based 

stochastic mapping algorithm, dead reckoning is navigating based on the prediction 

step alone. Dead reckoning is the best estimate of the vehicle model without the 

addition of noise. Thus, since the control input is known for the desired path, the 

estimated path navigating by dead reckoning is the same as the desired path. This 

can be seen in Figure 4-3. 

Figure 4-3 shows the trajectory paths of the true vehicle and the estimated dead 

reckoning path.   The absolute position error for dead reckoning grows with time. 
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This error grows without bounds as a result of the process noise. The errors in 

vehicle states are shown in Figure 4-4. Finally, the variances in x and y position are 

shown in Figure 4-5. The variances show how the position error grows unbounded. 

Dead reckoning is navigating by projecting the vehicle through the vehicle model. 

There are no observations of features to "reset" the vehicle estimate. Thus, the error 

grows without bounds. 
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Figure 4-3: Dead Reckoning. True vehicle path versus estimated vehicle path. The red 
crosses represent the true vehicle path. The blue dots follow the estimated vehicle path. 
While performing dead reckoning, the estimated vehicle path is the same as the desired 
path. The true vehicle path differs because of the presence of process noise. 



4.2 SIMULATION RESULTS 75 

LU 
X 

200 

100 

0 

-100 h 

-200 

LU 

0 

Actual Errors with 1 sigma Bounds 

y^ 

~\_ 

200 400 600 800 1000 1200 1400 1600 1800 2000 

2000 

■D 

£    2 

ü   o-C^ LU 
O) 
c 

co     ^ 
CD 
X 

-4 
200 400 600 800 1000 1200 1400 1600 1800 2000 

timo /c^ 

Figure 4-4: Dead Reckoning. The errors for the vehicle states when navigating by dead 
reckoning are shown. The actual errors are represented by the red dashed line. The solid 
blue lines represent ±la error bounds. The errors grow without bounds. 
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Figure 4-6: Dead Reckoning. Top: The determinant of the overall vehicle uncertainty, 
Pvv. Bottom: The determinant of the uncertainty in the vehicle x and y position, 

xy 
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4.2.2    Concurrent mapping and localization 

This simulation navigates using the stochastic mapping algorithm defined in Chap- 

ter 2. Unlike dead reckoning, stochastic mapping utilizes observations of objects in 

the environment; stochastic mapping is a feature-based approach to CML. Observ- 

ing features is used to obtain reference points for navigation, these features serve as 

localization points whose re-observation reduces vehicle uncertainty. 

The estimated path and true path of the vehicle are compared in Figure 4-7. The 

CML error estimates are bounded as shown in Figure 4-8. They converge to lower 

limits as defined by the CML convergence theorems described in Section 2.5. The 

vehicle uncertainty converges to the initial vehicle uncertainty as successive obser- 

vations are made. Because the estimated uncertainty can only be decreased during 

an update, the vehicle uncertainty can only be as good as the uncertainty that the 

vehicle possessed at the time it first observed a feature. The variances in the vehicle 

estimate converge as shown in Figure 4-9. 

The volume of uncertainty in the vehicle can be represented as the determinant of 

the covariance matrix. The top of Figure 4-10 shows the determinant of the vehicle 

uncertainty, P„„. The x and y uncertainty is shown in the bottom of Figure 4-10 

as the determinant of the uncertainty in Pxy. The jumps in these figures represent 

the vehicle re-observing a feature and updating its estimate. This re-observation of 

features proves to lower the uncertainty in the vehicle estimate. 
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Figure 4-7: Concurrent Mapping and Localization. True vehicle path versus estimated 
vehicle path. The red crosses represent the true vehicle path. The blue dots follow the 
estimated vehicle path. The minor jumps in estimated and true position occur when the 
vehicle obtains an update and improves its estimated position. 
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Figure 4-8: Concurrent Mapping and Localization. When performing CML, the errors are 
bounded. The actual errors are represented by the red dashed line. The solid blue lines 
represent ±\a error bounds. As expected, these errors converge. 
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Figure 4-10: Concurrent Mapping and Localization. Top Left: The determinant 
of the vehicle uncertainty, Pvv. This determinant converges to the determinant of 
the vehicle uncertainty at the time the first feature was observed. Top Right: The 
close-up shows the convergence of the uncertainty. Bottom Left: The determinant 
of x and y vehicle uncertainty, Pxy. Bottom Right: The close-up shows that in the 
limit, as successive observations are taken, the vehicle uncertainty converges to the 
initial x and y uncertainty of the vehicle at the time it first observed a feature. 
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4.2.3    Planned perception simulation #1 

This simulation integrates planned perception and CML. The vehicle navigates from 

waypoint to waypoint. The planned perception algorithm goes into effect when the 

uncertainty in the vehicle estimate reaches a certain threshold. This simulation is 

broken down into scenarios demonstrating different strategies of integrating planned 

perception and CML. 

As discussed in Section 3.4, planned perception chooses which feature the vehicle 

should steer toward defined by the equation 

Vi = -a\ {WiSiWj)v | + ß\\xfi - x„|| + C • f {densityfi). (4.5) 

The action of the robot is given by evaluating Equation 4.6 using the metric Equa- 

tion 4.7. The vehicle steers towards the feature which satisfy 

A** = argt min ]?*, (4.6) 

A*(fc)<A*(fc-l). (4.7) 

The first scenario addresses only the first criteria for planned perception: For all 

mapped features i = 1,..., Nf, the re-observation of which feature % will best improve 

vehicle estimates? The second scenario addresses: What is the cost of re-observing 

feature i ? The third scenario combines both of these criteria along with addressing 

the data association problem. 

For each scenario, the uncertainty determinant threshold is set at PWthreshoid — 

0.05. 

Planned perception - Scenario 1 

This scenario addresses the first criteria of planned perception. It only address 

| (WjSiWf )v | Equation 4.5. Thus, the weighting gains ß and C, are set to zero. 

The cost and risk of associated with re-observing feature i are not addressed in this 
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scenario. 

The trajectories of the true and estimated vehicle paths are shown in Figure 4-11. 

The vehicle deviates from the desired path, Figure 4-2, when the uncertainty for the 

vehicle exceeds the given threshold. When this occurs, the vehicle chooses to steer 

toward feature i that satisfies 

r\ = -a| (WÄWfM, (4.8) 

where a is set to 1021 to accurately compare the determinants of (W^Wf )v. This 

gain was set after analyzing the determinant values associated with Equation 4.5. 

By deviating from the desired path, the vehicle is able to re-observe features that 

would otherwise not have been in the sensor's field of view. This allows for the vehicle 

to decrease its uncertainty in estimated states through the re-observation of features. 

The re-observation of features with a relatively small position uncertainty clearly 

provides more benefit than observing features with relatively larger uncertainties in 

position. 

Figure 4-14 represents when the uncertainty threshold is breached. The thresh- 

old is plotted with the current uncertainty. The feature the vehicle steers toward is 

reflected in Figure 4-15. The vehicle tends to steer toward features that are mapped 

earlier during the mission. This is expected because these features have less uncer- 

tainty in their position estimates and provide better localization points for vehicle 

state estimation. 

These results are consistent with the convergence theorems described in Sec- 

tion 2.5. The first convergence theorem states: The determinant of any sub-matrix 

of the map covariance matrix decreases monotonically as successive observations are 

made. This means that the error in the estimates of the absolute location of the ve- 

hicle and features diminishes as successive measurements are made. This is the point 

of planned perception; when the vehicle uncertainty reaches a certain threshold, the 

vehicle chooses to re-observe certain features in order to reduce the uncertainty in its 

estimates. 
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In this scenario, the reason the vehicle decides to head toward the features with 

less uncertainty associated with their position is directly related to the second and 

third convergence theorems described in Section 2.5. As successive observations are 

made, the uncertainty in feature location diminishes to the uncertainty that was 

present in the vehicle at the time that feature was first observed. Thus, the vehicle 

chooses to steer toward features having relatively small uncertainties. 

40 60 80 

Position in X Direction (m) 

120 

Figure 4-11: Planned Perception, Scenario 1. True vehicle path versus estimated vehicle 
path. The red crosses represent the true vehicle path. The blue dots follow the estimated 
vehicle path. The minor jumps in estimated and true position occur when the vehicle 
obtains an update and improves its estimated position. 
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Figure 4-12: Planned Perception, Scenario 1. The errors of the state estimate when 
performing planned perception. The actual errors are represented by the red dashed line. 
The solid blue lines represent ±la error bounds. 
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Figure 4-13: Planned Perception, Scenario 1. The variances in x and y position are plotted. 
The dotted red line is the variance in x while the dashed blue line is the variance in y. As 
expected, these variances converge to lower limits. 
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Figure 4-14: Planned Perception, Scenario 1. Top left: Determinant of vehicle 
uncertainty, Pvv. The black line represents the threshold when planned perception 
was performed. Top right: The uncertainty is quickly restored below the threshold 
as a result of the planned perception algorithm. The close-up also shows that in the 
limit, as successive observations are taken, the vehicle uncertainty converges to the 
initial uncertainty of the vehicle at the time it first observed a feature. This is also 
below the threshold. Bottom: The same is shown for the x and y uncertainty of the 
vehicle, Pxy. 
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Figure 4-15: Planned Perception, Scenario 1. Top: This figure shows the IDs of the 
features the vehicle chose to steer toward while performing planned perception. The 
IDs are obtained as the feature is mapped (i.e. the first feature mapped gets ID #1). 
The feature ID is 0 when the vehicle is "exploring" and the uncertainty is below the 
given threshold. Bottom: A close-up of the feature ID figure is shown here. 
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Planned perception - Scenario 2 

This scenario addresses the second criteria of planned perception. Referring to Equa- 

tion 4.5, this scenario only address \\x.fi - x„||. Thus, the weighting gains a and C, are 

set to zero. 

In this scenario, planned perception is performed by minimizing the distance 

||x/j - x„||. Therefore, while performing planned perception, the vehicle steers to- 

ward the closest, previously mapped feature. Thus, when the threshold uncertainty 

determinant is exceeded, the vehicle steers toward feature i that satisfies 

Ti = ß\\kSi--kv\\, (4.9) 

where ß is set to 1 to accurately compare the distance ||x^ - x„||. 

Deviating from the desired path allows the vehicle to re-observe features that 

otherwise would not have been in the sensor's field of view. In this case, the vehicle 

steers toward the closest feature previously mapped. 

Because the constraint is to steer toward the feature closest in distance, the vehicle 

does not always diminish its uncertainty through the re-observation of feature i that 

satisfies Equation 4.9. Heading toward and re-observing the closest feature sometimes 

causes the vehicle to "circle" a feature, re-observing it time and time again. Thus, the 

uncertainty does not always achieve the desired reduction through the re-observation 

of feature i. The "circling" of features can be shown in Figure 4-16. 

The vehicle is able to reduce its uncertainty below the given threshold, not always 

through the re-observation of the closest feature, but through re-observing another 

feature while it is "circling." This is shown in Figure 4-20 and Figure 4-16 where 

the vehicle is constantly steering toward and circling a certain feature. The vehicle 

happens to re-observe another feature in the process of circling the desired feature 

i The re-observation of another feature, along with re-observing the feature closest 

to the vehicle, provide the update needed to drive vehicle uncertainty below the 

threshold. 

Figure 4-19 represents the breaching of the uncertainty threshold. The threshold 
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is plotted with the current uncertainty. Figure 4-18 shows the variances of x and y 

vehicle position. As successive re-observations of featuresa are made, these variances 

converge as expected. 

The criteria set forth in this scenario does not always provide the necessary means 

to achieve the desired vehicle uncertainty level. This is due to the vehicle steer- 

ing toward the mapped feature that is closest in distance. It is not always the re- 

observation of the closest feature i that provides the necessary update information; 

it is re-observing feature i along with re-observing a different feature in the process 

of successive acts of circling, that provide the necessary measurements to successfully 

reduce vehicle uncertainty. 
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Figure 4-16: Planned Perception, Scenario 2. True vehicle path versus estimated vehicle 
path. The red crosses represent the true vehicle path. The blue dots follow the estimated 
vehicle path. The loops in the path show where the vehicle "circles" a feature. 
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Actual Errors with 1 sigma Bounds 
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Figure 4-17: Planned Perception, Scenario 2. The errors of the state estimate when 
performing planned perception. The actual errors are represented by the red dashed line. 
The solid blue lines represent ±lcr error bounds. 
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Figure 4-18: Planned Perception, Scenario 2. The variances in x and y position are plotted. 
The red dotted line is the variance in x while the dashed blue line is the variance in y. As 
expected, these variances converge to lower limits. 
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Figure 4-19: Planned Perception, Scenario 2. Top left: Determinant of vehicle un- 
certainty, Pvv. The black line represents the threshold when planned perception was 
performed. Top right: The overall uncertainty is quickly restored below the thresh- 
old as a result of the planned perception algorithm. The close-up also shows that in 
the limit, as successive observations are taken, the vehicle uncertainty converges to 
the initial uncertainty of the vehicle at the time it first observed a feature. This is 
also below the threshold. Bottom: The same is shown for the x and y uncertainty 
of the vehicle, Pxy. 
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ID of Features Steering Toward in Planned Perception 
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Figure 4-20: Top: Planned Perception, Scenario 2. This figure shows the IDs of 
the features the vehicle chose to steer toward while performing planned perception. 
The IDs are obtained as the feature is mapped (i.e. the first feature mapped gets ID 
#1). The feature ID is 0 when the vehicle is "exploring" and the uncertainty is below 
the given threshold. Bottom: A close-up of the feature ID figure is shown here. 
The close-up shows how the vehicle continually circles a feature until the uncertainty 
decreases below the given threshold. 
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Planned perception - Scenario 3 

This scenario combines all three criteria of planned perception. Thus, the feature the 

vehicle chooses to steer toward while performing planned perception is determined by 

evaluating 

Ti = -a\ (WÄWf). | + ß\\Zfi - xw|| + C • f (density fi), (4.10) 

A»* = arg, min Ti, (4.11) 

based on the metric 

Ai,(fc) < Alt(k - 1). (4.12) 

Since all three criteria discussed in Chapter 3 are being considered simultaneously, 

Ti must be scaled by the weighting factors to obtain a scalar number that accurately 

weights all three factors according to the desired mission. For this scenario, the 

weighting factor £ is scaled to 20. Thus, the factor weights Equation 4.10 so that the 

vehicle will be more likely to steer away from any feature that has another feature 

within 10 meters of it. This criteria is set to minimize the problems inherent in data 

association. The weighting gains a and ß are set to 1021 and 2, respectively. These 

gains affect the weighting of the criteria: 

1. For all mapped features i= l,...,Nf, which re-observation of feature i will best 

improve vehicle estimates? 

2. What is the cost of re-observing feature i ? 

The values of the gains were chosen so as to weight each criteria equally. The val- 

ues were obtained through analyzing values obtained by evaluating Equation 4.10 in 

simulation. 

Figure 4-21 shows the path the vehicle travelled. The vehicle deviates from the 

desired path in order to re-observe features and reduce the estimated uncertainty. 
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The path travelled reflects the criteria for this scenario; the vehicle steers toward a 

combination of: features with less certainty, features that are relatively close to the 

current vehicle position, and features not located in cluttered areas. This is reflected 

in Figure 4-25 as the vehicle steers toward a mixture of features. 

By performing planned perception, the uncertainty of the vehicle is desired to be 

held below a given threshold. Figure 4-24 shows the vehicle uncertainty and the given 

threshold. This is also reflected in the errors associated with each state estimate, 

Figure 4-22, and the variance of the vehicle's x and y estimates, Figure 4-23. As 

the vehicle uncertainty exceeds the threshold, the vehicle maneuvers to re-observe 

features. 

Through the combination of all three criteria, the vehicle attempts to maintain a 

desired uncertainty level by re-observing features. The action of the robot is given by 

evaluating Equation 4.11 using the metric Equation 4.12. The vehicle steers towards 

the feature which satisfies the above criteria. The features are chosen based on a 

tradeoff between all three criteria. The features chosen are a combination of features 

that are relatively close to the vehicle, features not located in a cluttered area, and 

features having relatively small uncertainties. 
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Figure 4-21: Planned Perception, Scenario 3. True vehicle path versus estimated vehicle 
path. The red crosses represent the true vehicle path. The blue dots follow the estimated 
vehicle path. 
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Actual Errors with 1 sigma Bounds 
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Figure 4-22: Planned Perception, Scenario 3. The errors of the state estimate when 
performing planned perception. The actual errors are represented by the red dashed line. 
The solid blue lines represent ±1<7 error bounds. 
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Figure 4-23: Planned Perception, Scenario 3. The variances in x and y position are plotted. 
The red dotted line is the variance in x while the dashed blue line is the variance in y. As 
expected, these variances converge to lower limits. 
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Figure 4-24: Planned Perception, Scenario 3. Top left: Determinant of vehicle 
uncertainty, Pvv. The black line represents the threshold when planned perception 
was performed. Top right: The close-up shows that in the limit, as successive 
observations are taken, the vehicle uncertainty converges to the initial uncertainty of 
the vehicle at the time it first observed a feature. The vehicle uncertainty is quickly 
restored below the threshold as a result of the planned perception algorithm. Bottom 
left: Determinant of vehicle x and y uncertainty, Pxy. Bottom Right: As expected, 
the uncertainty converges. 
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Figure 4-25: Planned Perception, Scenario 3. Top: This figure shows the IDs of the 
features the vehicle chose to steer toward while performing planned perception. The 
IDs are obtained as the feature is mapped (i.e. the first feature mapped gets ID #1). 
The feature ID is 0 when the vehicle is "exploring" and the uncertainty is below the 
given threshold. Bottom: A close-up of the feature ID figure is shown here. The 
vehicle chooses to steer toward a combination of features that have relatively little 
uncertainty (those mapped earlier) and features that are close to its current position. 
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4.2.4    Planned perception simulation #2 

This simulation integrate the planned perception and CML. Planned perception sim- 

ulation #1, described in Section 4.2.3, constrains the overall uncertainty associated 

with the vehicle states, P„„. This simulation, however, constrains only the uncertainty 

associated with the vehicle's x and y estimates, termed Pxy. This is chosen because 

it specifically constrains the area of uncertainty in the vehicle's x and y position 

estimates. 

The vehicle desires to navigate from waypoint to waypoint. The planned percep- 

tion algorithm goes into effect when the determinant of PXJ/ exceeds a given threshold 

Pxythreshoid- This threshold determinant is set to 4.0. The number 4.0 is chosen to 

reflect the desire to maintain the vehicle's x and y uncertainty below 4 m2. This sim- 

ulation is broken down into different scenarios. The following scenarios demonstrate 

different strategies of integrating planned perception and CML when constraining 

the error uncertainty for the x and y state estimates. Except for the determinant 

threshold constraining Pxy and being set to 4.0, the scenarios are the same as those 

in Section 4.2.3. 

Planned perception - Scenario 1 

This scenario addresses the first criteria of planned perception. Thus, this scenario 

only addresses | (WiSjWf )„ | in Equation 4.5. The weighting gains ß and C are set 

to zero and a is set to 1021 as in Section 4.2.3. 

Figure 4-26 shows the trajectories of the true and estimated vehicle paths. When 

the vehicle's x and y uncertainty exceed the given threshold, the vehicle deviates 

from the desired path to re-observe features. The re-observation of features allows 

the vehicle to decrease its uncertainty in the x and y estimated states. In turn, this 

also decreases the overall vehicle uncertainty, P„„. This can be seen in Figure 4-29. 

While performing planned perception, the vehicle steers towards features as shown 

in Figure 4-30. As expected, these features tend to be those mapped earlier during the 

mission. This is because these features have more certainty in their position estimates 
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and will provide better updates for vehicle state estimation. 

The uncertainty threshold is breached mainly during the vehicle's first cycle of 

the "lawnmower" pattern. This is shown in Figure 4-26 and also in the close-up of 

Figure 4-30. As the close-up shows, the vehicle performs in localization mode mainly 

during the first run of the pattern (up to around 900 seconds). The vehicle then re- 

observes features reducing uncertainty estimates. After closing-the-loop, the vehicle 

mainly operates in exploration mode for the rest of the mission. 

As described in Section 4.2.3 scenario 1, these results are consistent with the 

convergence theorems described in Section 2.5. 

140 

120 

Figure 4-26: Planned Perception, Scenario 1. True vehicle path versus estimated vehicle 
path. The red crosses represent the true vehicle path. The blue dots follow the estimated 
vehicle path. The minor jumps in estimated and true position occur when the vehicle 
obtains an update and improves its estimated position. 
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Actual Errors with 1 sigma Bounds 
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Figure 4-27: Planned Perception, Scenario 1. The errors of the state estimate when 
performing planned perception. The actual errors are represented by the red dashed line. 
The solid blue lines represent ±la error bounds. As expected, these errors are bounded. 
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Figure 4-28: Planned Perception, Scenario 1. The variances in x and y position are plotted. 
The red dotted line is the variance in x while the dashed blue line is the variance in y. As 
expected, these variances converge to lower limits. 
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Figure 4-29: Planned Perception, Scenario 1. Top left: Determinant of vehicle 
uncertainty, ~PVV. Top right: The close-up shows the vehicle uncertainty converging 
to the initial vehicle uncertainty. Bottom Left: The determinant of the vehicle 
x and y uncertainty, ~Pxy. The black line represents the threshold when planned 
perception was performed. Bottom Right: The uncertainty is quickly restored 
below the threshold as a result of the planned perception algorithm. The close-up 
also shows that in the limit, as successive observations are taken, the x and y vehicle 
uncertainty converges to the initial x,y uncertainty of the vehicle at the time it first 
observed a feature. This is also below the threshold. 
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Figure 4-30: Planned Perception, Scenario 1. Top: This figure shows the IDs of the 
features the vehicle chose to steer toward while performing planned perception. The 
IDs are obtained as the feature is mapped (i.e. the first feature mapped gets ID #1). 
The feature ID is 0 when the vehicle is "exploring" and the uncertainty is below the 
given threshold. Bottom: A close-up of the feature ID figure is shown here. 
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Planned perception - Scenario 2 

In this scenario, planned perception is performed by minimizing the distance j|% - 

x„||. Thus, when the threshold uncertainty determinant is exceeded, the vehicle steers 

toward feature i that satisfies Equation 4.5. The weighting gain ß is set to 1 while 

the gains a and £ are set to zero. 

While performing planned perception, the vehicle heads toward the closest feature. 

The vehicle steers to re-observe this feature to decrease its estimated uncertainty. 

However, because of this constraint, heading toward and re-observing the closest 

feature sometimes causes the vehicle to "circle" a feature as described in Section 4.2.3. 

The circling of features can be shown in Figure 4-31. 

The vehicle reduces its uncertainty not always through the re-observation of the 

closest feature, but through re-observing another feature while it is "circling." Fig- 

ure 4-35 and Figure 4-31 show the vehicle constantly steering toward and circling a 

feature. 

During its first "lap" of the desired path, the vehicle tends to operate mostly 

in localization mode (planned perception). However, after re-observing one of the 

first features mapped (closing-the-loop), the vehicle's x and y uncertainty diminishes 

below the threshold. Confident in its x and y estimates, the vehicle then spends 

most of the mission operating in exploration mode. This is seen through Figure 4-35; 

around time 1300 seconds, the vehicle explores. 
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Figure 4-31: Planned Perception, Scenario 2. True vehicle path versus estimated vehicle 
path. The red crosses represent the true vehicle path. The blue dots follow the estimated 
vehicle path. The minor jumps in estimated and true position occur when the vehicle 
obtains an update and improves its estimated position. The loops in the path show where 
the vehicle "circles" a feature. 
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Actual Errors with 1 sigma Bounds 

200 400 600 800 1000 1200 1400 1600 1800        2000 

200 400 600 800 1000   1200   1400   1600   1800   2000 

■D 
CO 
-^0.5 

W  0 
O) 

1-0-5 
0 
X 

-1 

_■. _ JM_%L!i ,'i .LA _JUrJÜil 
"^^^iTrl TV 1W T 

0    200    400    600    800   1000   1200   1400   1600   1800   2000 

time (s) 

Figure 4-32: Planned Perception, Scenario 2. The errors of the state estimate when 
performing planned perception. The actual errors are represented by the red dashed line. 
The solid blue lines represent ±la error bounds. As expected, these errors are bounded. 
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Figure 4-33: Planned Perception, Scenario 2. The variances in x and y position are plotted. 
The red dotted line is the variance in x while the dashed blue line is the variance in y. As 
expected, these variances converge to lower limits. 
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Figure 4-34: Planned Perception, Scenario 2. Top left: Determinant of vehicle 
uncertainty, P„„. Top right: The close-up shows the vehicle uncertainty converging 
to the initial vehicle uncertainty. Bottom Left: The determinant of the vehicle 
x and y uncertainty, P^. The black line represents the threshold when planned 
perception was performed. Bottom Right: The uncertainty is quickly restored 
below the threshold as a result of the planned perception algorithm. The close-up 
also shows that in the limit, as successive observations are taken, the x and y vehicle 
uncertainty converges to the initial x,y uncertainty of the vehicle at the time it first 
observed a feature. This is also below the threshold. 
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Figure 4-35: Planned Perception, Scenario 2. Top: This figure shows the IDs of 
the features the vehicle chose to steer toward while performing planned perception. 
The IDs are obtained as the feature is mapped (i.e. the first feature mapped gets ID 
#1). The feature ID is 0 when the vehicle is "exploring" and the uncertainty is below 
the given threshold. Bottom: A close-up of the feature ID figure is shown here. 
The close-up shows how the vehicle continually circles a feature until the uncertainty 
decreases below the given threshold. 
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Planned Perception - Scenario 3 

This scenario combines all three criteria of planned perception. The action of the 

robot is given by evaluating Equation 4.11. For this scenario, the weighting gains a, 

ß, and C are set to 1021, 2, and 20, respectively. The assignment of these values is 

discussed in Section 4.2.3. 

The path the vehicle travelled is shown in Figure 4-36. The vehicle deviates 

from the desired path to re-observe features and reduce the uncertainty in the state 

estimates. The path travelled and features chosen to steer toward reflect the criteria 

for this scenario; while performing planned perception, the vehicle steers toward a 

feature that is a combination of: position uncertainty, distance to vehicle, and feature 

density. This is shown in Figure 4-40. 

Planned perception is performed to maintain a desired vehicle uncertainty. In this 

simulation, the constraint is placed on the uncertainty in the vehicle's x and y position. 

Figure 4-39 shows the determinant of vehicle uncertainties with the given threshold. 

The desire to maintain a given uncertainty threshold is reflected in Figure 4-37, which 

shows the errors associated with each vehicle state estimate, and Figure 4-23, which 

shows the variance of the vehicle's x and y estimates. 
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Figure 4-36: Planned Perception, Scenario 3. True vehicle path versus estimated vehicle 
path. The red crosses represent the true vehicle path. The blue dots follow the estimated 
vehicle path. The minor jumps in estimated and true position occur when the vehicle 
obtains an update and improves its estimated position. 
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Actual Errors with 1 sigma Bounds 
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Figure 4-37: Planned Perception, Scenario 3. The errors of the state estimate when 
performing planned perception. The actual errors are represented by the red dashed line. 
The solid blue lines represent ±la error bounds. As expected, these errors are bounded. 
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Figure 4-38: Planned Perception, Scenario 3. The variances in x and y position are plotted. 
The red dotted line is the variance in x while the dashed blue line is the variance in y. As 
expected, these variances converge to lower limits. 
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Figure 4-39: Planned Perception, Scenario 3. Top left: Determinant of vehicle 
uncertainty, Pw. Top right: The close-up shows the vehicle uncertainty converging 
to the initial vehicle uncertainty. Bottom Left: The determinant of the vehicle 
x and y uncertainty, Pxy. The black line represents the threshold when planned 
perception was performed. Bottom Right: The uncertainty is quickly restored 
below the threshold as a result of the planned perception algorithm. The close-up 
also shows that in the limit, as successive observations are taken, the x and y vehicle 
uncertainty converges to the initial x,y uncertainty of the vehicle at the time it first 
observed a feature. This is also below the threshold. 



120 SIMULATION DESIGN AND RESULTS 

ID of Foaluros Slewing Toward in Planned Perceplton 

9 

0 200 400 600 800 1000        1200        1400        1600        1800        2000 

lime (a) 

IDs of Features Vehicle Chose to Steer Toward 

1100   1200   1300   1«0   1500   1600   1700   1800   1900   2000 

Close-up of Feature IDs 

Figure 4-40: Planned Perception, Scenario 3. Top: This figure shows the IDs of the 
features the vehicle chose to steer toward while performing planned perception. The 
IDs are obtained as the feature is mapped (i.e. the first feature mapped gets ID #1). 
The feature ID is 0 when the vehicle is "exploring" and the uncertainty is below the 
given threshold. Bottom: A close-up of the feature ID figure is shown here. 
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4.3    Conclusions 

Navigating by dead reckoning alone requires projecting the vehicle through the ve- 

hicle model. There are no observations of features to "reset" the vehicle estimate; 

no reference can be made to reset the uncertainty in vehicle position. Thus, while 

navigating by dead reckoning, the absolute position error for dead reckoning grows 

without bounds as a result of process noise. The unbounded error growth in state 

estimates are shown in Figure 4-4. Dead reckoning causes the uncertainty associated 

with the vehicle's covariance matrix to grow exponentially as shown in Figure 4-6. 

Concurrent mapping and localization is feature-based navigation. The observation 

of features is used to obtain localization points for navigation. CML provides a means 

to navigate so the error estimates remain bounded. This can be seen in Figure 4-8 and 

Figure 4-9. CML also provides a method for vehicle uncertainty to converge to the 

initial uncertainty of the vehicle through successive re-observation of features. This is 

shown in Figure 4-10. As depicted in Figure 4-7, CML provides a more robust way to 

estimate the vehicle path when compared to dead reckoning. Thus, when navigating 

from waypoint to waypoint, CML is a substantial improvement to dead reckoning. 

Planned perception aims to improve the CML framework. As can be seen in 

Figure 4-10, the uncertainty in vehicle estimates grows while performing a mission. 

CML allows for the uncertainty to be reduced through the re-observation of features. 

However, planned perception allows for this reduction to take place quicker and in 

a more robust manner. Planned perception constrains vehicle uncertainty. When 

the uncertainty exceeds a certain threshold, the vehicle maneuvers to re-obtain a 

reduction in the estimated uncertainty. 

The first simulation integrating planned perception and CML focuses on constrain- 

ing the overall uncertainty of the vehicle, P„„. The first scenario in Section 4.2.3 in- 

volves only addressing the first criteria in our planned perception algorithm described 

in Chapter 3. This scenario focuses on the re-observation of which feature will best 

improve the uncertainty associated with vehicle state estimates. 

This scenario proves to improve CML performance. As shown in Figure 4-10 and 
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Figure 4-9, while navigating by CML alone, the uncertainties in vehicle estimates 

grows until the vehicle closes-the-loop or re-observes a feature. When planned per- 

ception is integrated in this scenario, CML performance is improved. This can be 

seen in Figure 4-14 and Figure 4-13. The vehicle is more confident in its estimates 

than when compared to navigating just by CML. Also, the overall uncertainty in the 

vehicle is improved. This is seen by comparing Figure 4-10 and Figure 4-14. Thus, 

integrating planned perception within CML further reduces estimates in vehicle un- 

certainty. 

The second scenario in Section 4.2.3 minimizes the distance between the vehicle 

and a previously mapped feature. This scenario proves to be a liability to achieving 

the overall mission objective (moving from waypoint to waypoint). This is because 

as the uncertainty exceeds the given threshold, the vehicle steers toward the mapped 

feature closest to it. This may cause "circling" to occur as described in Section 4.2.3. 

This circling affect is undesirable because re-observing this feature over and over 

may never allow for the vehicle to reduce the estimated uncertainty below the given 

threshold. While circling in our experiments, it is by chance that the vehicle happens 

to re-observe another feature (not the one it is circling) and is able to successfully 

reduce its uncertainty. 

The third scenario combines all three planned perception criteria described in 

Chapter 3. This presents a more realistic scenario. This is because autonomous 

vehicles do not have an unlimited power supply. Thus, unlike operating as in the 

first scenario, it may not always be desirable to travel far distances to re-observe 

a certain feature. Therefore, by incorporating all criteria, a trade-off between each 

is presented. The feature which best satisfies all three criteria is the one chosen in 

the planned perception algorithm. Like the first scenario, this simulation proves to 

be an improvement to CML. The uncertainty associated in the vehicle estimates is 

improved as shown by comparing Figure 4-10 and Figure 4-24. 

The integration of planned perception and CML described in the above scenarios 

provide methods to alter the vehicle's motion to maintain an uncertainty level. How- 

ever, by constraining the determinant of Pm, the uncertainty in the x and y position 
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is still relatively large. This can be seen in determinant figures and variance plots 

of the above scenarios. Performing planned perception by constraining Pvv proves 

to improve CML. However, the question is then raised if it is possible to obtain an 

improvement to the vehicle's x and y uncertainty. 

The second simulation addresses the question of constraining the uncertainty in 

the vehicle's x and y estimates; it constrains the associated determinant of P^. The 

first scenario in Section 4.2.4 proves to drastically improve CML performance. This 

is shown in Figure 4-29. By constraining the uncertainty in the x and y vehicle 

estimates, the uncertainty in the overall vehicle estimate, P„„, is also reduced. This 

can be seen by comparing Figure 4-10 and Figure 4-29. 

The second scenario in Section 4.2.4 again proves that performing planned per- 

ception by relying on the re-observation of the nearest feature may not achieve the 

mission objective. Again, "circling" becomes an issue. This is seen by the loops in 

the vehicle path of Figure 4-31 and by analyzing the features the vehicle steers toward 

in Figure 4-35. 

By constraining vehicle uncertainty, planned perception improves the CML frame- 

work. It provides a method to adaptively alter the vehicle's sensing strategy in order 

to maintain a better estimate of vehicle states. Two methods of constraining vehicle 

uncertainty are introduced. The first involves constraining the overall uncertainty 

associated with the vehicle, P„„. The second constrains the uncertainty associated 

with the x and y estimates of vehicle position, P^. Constraining Pxy proves to be 

more desirable. 

There is, however, a trade-off between the two constraints. By constraining P^, 

the vehicle spends most of its "first lap" of the pattern operating in localization mode 

performing planned perception. Once the vehicle closes-the-loop, it is able to maintain 

a smaller uncertainty level during the rest of its mission. Thus, more energy is spent 

localizing the vehicle in the beginning of the mission when constraining Pxy. After 

closing-the-loop, the vehicle operates with more certainty compared to performing 

planned perception constraining P„„. 

A trade-off also exists between the weighting gains and the three different planned 
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perception criteria. Addressing the first criteria alone yields the best planned per- 

ception performance. However, it may not always be desirable, due to energy costs, 

to re-visit features that are farther away than others. Also, only addressing the 

second criteria proves to cause the vehicle to "circle" features. This circling and 

re-observation of the same feature over and over does not always yield the needed 

update to reduce vehicle uncertainty. Thus, by incorporating all three criteria, the 

vehicle no longer continually "circles" certain features and is not required to travel 

back to the first features mapped. The algorithm allows for the weighting gains to 

be set, determining the performance of the planned perception algorithm, according 

to the specific, desired mission. 

4.4    Summary 

This chapter presented the description of the simulation written in © MATLAB 

combining the ideas presented in Chapter 2 and Chapter 3. The results integrating 

planned perception within CML were also presented. The results and performances 

of the different simulations were then compared. 



Chapter 5 

Conclusions and Future Research 

This chapter summarizes the contributions of this thesis and presents suggestions for 

future research. 

5.1    Contributions 

This thesis presents a method for integrating planned perception within concurrent 

mapping and localization. Planned perception is the process of adaptively deter- 

mining the sensing strategy of the mobile robot. The goal of integrating planned 

perception with CML is to provide the mobile robot with a means to determine 

the optimal action given the current knowledge of robot pose, sensors, and the en- 

vironment. CML performance, augmented with smarter sensing strategies, exhibits 

improved performance by motivating changes in robot orientation and sensing strate- 

gies. Our planned perception algorithm aims to minimize the uncertainty associated 

with the vehicle's state estimates. It provides a method that addresses the trade-off 

between mission success and knowledge of the vehicle's current state. Our approach 

was applied and validated in simulation. 
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5.2    Future Research 

This thesis is motivated by the study of autonomous underwater vehicles (AUVs). 

Thus, a suggested area for future research includes integrating planned perception 

within CML in the real world with actual autonomous robots. Extending the ideas 

presented in this thesis to real world environments might require insight and future 

research in the areas of vehicle modelling, data association, and navigating by CML 

in dynamic environments. 

One extension to planned perception may be to incorporate sensor characteristics 

into adaptive sensing strategies. Taking into account the sensor's range and field 

of view may motivate the vehicle steer not towards certain features, but towards a 

"virtual waypoint" that would allow the vehicle to observe certain features. Another 

extension may be to develop a policy that explicitly minimizes angular error in the 

map. This may be performed by analyzing the estimated angular error between 

features and developing a strategy whose motion reduces this error. 

Our approach provides a method to minimize the uncertainty associated in the 

vehicle estimates. An extension of integrating planned perception and CML may be 

to analyze a different metric of performing adaptive sensing; instead of utilizing a 

policy to re-observe features, utilize a policy that integrates adaptive motion control 

and CML based on the correlation structure of the covariance matrix. Therefore, 

instead of choosing to re-observe a feature that reduces vehicle uncertainty, choose 

actions that make the map more fully correlated. 
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